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On-line learning with adaptive back-propagation in two-layer networks
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An adaptive back-propagation algorithm parametrized by an inverse tempegaistudied and compared
with gradient descenstandard back-propagatipfor on-line learning in two-layer neural networks with an
arbitrary number of hidden units. Within a statistical mechanics framework, we analyze these learning algo-
rithms in both the symmetric and the convergence phase for finite learning rates in the case of uncorrelated
teachers of similar but arbitrary lengih These analyses show that adaptive back-propagation results generally
in faster training by breaking the symmetry between hidden units more efficiently and by providing faster
convergence to optimal generalization than gradient desg®b®63-651X97)08109-9

PACS numbdis): 87.10+€, 05.20--y, 02.50-r, 02.30.Hq

[. INTRODUCTION trapped in the symmetric subspace. Speeding up the escape
from the symmetric phase is likely to improve the training

Multilayer feedforward perceptrons are widely used inefficiency significantly; in this paper we suggest a simple
classification and regression applications mainly due to theimodification of the basic back-propagation and analyze the
ability to learn a wide range of magd] from examples. resulting expected improvement in training efficiency.
When learning a mag, from N-dimensional inputs{ to The need for improved neural network training methods is
scalars{ the parametergW} of the studentnetwork are  clear as training efficiency is in the heart of the method itself
modified according to some training algorithm so that theand plays a significant role in determining the usefulness of
map defined by these parametefy approximates the the method as a whole; new tools may enable us to obtain
teacher § as close as possible. The resulting performanceetter performance in shorter training times as well as to
can be measured by tigeneralization errorey, the average  expand the envelope of feasible tasks. For batch training

of an error measure over input space,=(e);. The eror  here is a variety of efficient training methods available, such
measure or loss function is often defined as the squared d|§-s second-order methode.g., Newton-Raphson or conju-
tance between the output of the network and the desired ouﬁate gradient However, as these methods are based on the

put, i.e., entire training set they are not applicable to on-line learning.
1 Several different methods have been employed for improv-

€= E[fw(g)—fo(g)]z. (1) ing on-line training in both discrete and smooth networks,

most of which are based on heuristics or on analysis in the

One usually distinguishes between two learning paradigm&Symptotic regime. o
batch learning where training algorithms are generally = AMmong the most common modifications to the conven-

based on minimizing the error on the whole set of giventional back-propagation algorithm, for smooth systems, is
examples, anan-line learning where single examples are fraining with momentum. An analysis using stochastic ap-
presented serially and the training algorithm adjusts the paProximation theory3] shows that for learning large example
rameters after the presentation of each example. The effg€ts it merely rescales the learning rate in the convergence
ciency of these training algorithms is measured by theiPhase. Similar trivial effects are also mirrored in the statisti-
speed of convergence to an “acceptable” generalization ercal mechanics framewofl], unless different scaling is used
ror (in terms of training time or the number of example pre-for the learning rate term. Its usefulness is so far inconclu-
sentationg sive. Other methods aimed at incorporating information
This research has been primarily motivated by recentibout the curvature of the error surface into the learning rule
work [2] investigating an on-line learning scenario of a gen-have been proposed recenitB;5]. These rules are expected
eral two-layer student network trained by gradient descento be efficient asymptotically, although their effect on earlier
(which is usually referred to in the neural network literaturestages of the learning process and especially on the length of
asback-propagationon a task defined by a teacher network the symmetric phase is not yet clear.
of similar architecture. It has been found that in the early Several efficient methods have been suggested for on-line
stages of training the student is drawn into a suboptimalearning in discrete networks. Some of the methods are based
symmetric phase, characterized by undifferentiated imitationpn a greedy maximization of the local difference in generali-
by student vectors, of parameter vectors related to the varization errof 6], while others are based on structured learning
ous teacher hidden nodes. Although student node symmetrules[7,8]. It is, however, unclear whether these methods can
is eventually broken and student performance converges the extended to accommodate smooth multilayer networks
the minimal achievable generalization error, a significantsuch as the soft-committee machir®2] and whether these
part of the training time may be spent with the systemextensions would be useful in devising an efficient method
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for escaping the symmetric phase, especially since applyinghere x;=W,- &N is the student activation angl() is a

local optimization in this phase is likely to fajas demon- sigmoidal transfer function. The mdg to be learned is de-

strated in[10]). fined by a teacher network of the same architecture
A method for breaking the symmetry of the student net-except for a possible difference in the number of hidden

work in smooth machines by enforcing a weight-orderingunits M and is defined by the weight vector8

penalty term on the space of hidden units has been suggestedB,} (n=1,... M). Training examples are of the form

in [11], showing a considerable improvement in training time(&+,(#), where the components of the input vectgtsare

for a very simple network architecture. A more detailed nu-drawn independently from a zero mean Gaussian distribution

merical investigation, however, shows that this method failsyith arbitrary variances?. The targets therefore are

completely in the case of isotropic teacher networks, with

uncorrelated teacher weight vectors of similar length, where y M 1

the student remains indefinitely trapped in a suboptimal symg#=—— g( — B, - &

metric phasd12]. In the case of a soft-committee machine WM =1 TN

where biases are applied to the hidden layer nodes, as is the

case in realistic networks, there is further evidence that thwhere y“=B,- £/\/N is the activation of teacher hidden

strongest symmetry-breaking effect is provided by the netunit n. Note that we will use indicegj,k,| to refer to units

work biaseq13], possibly leading to a stagnating competi- in the student network and,m for units in the teacher net-

tion in breaking the symmetry between biases and thavork.

weight-ordering penalty term. An on-line training algorithmA is defined by the update
The aim of this paper is twofold. It gives some insight of each weight in response to the presentation of an example

into the reasons for the short-comings of back-propagatiof&”,¢*), which can take the general form

and it furthermore investigates possible improvements by in-

troducing an adaptive back-propagation algoriftis]. This W{”1=W{‘+ A ({ v} W g (M), (4)

algorithm features, besides the learning ratea second

adaptable parameter, the inverse temperagjrevhich im-  where{y} defines parameters adjustable by the user. In the

proves the ability of the student to distinguish between hidcase of standard back-propagation, i.e., gradient descent on

den nodes of the teacher fr>1. We compare its efficiency the error function defined in Eql),

with that of gradient descent in training two-layer networks

following the framework off 2] and present numerical stud- AiGD(,?,Wﬂ,gM,gM): NSl (5)

ies and rigorous analyzes of both the breaking of the sym-

metric phase and the asymptotic convergence. We note thgjith

although these analyzes provide us with optimal values of

M
_r u
= Nn; a(y™), 3)

the user adjustable parameterand g for different stages of Si=5mg' (x)
the training process in a range of learning scenarios, it re- ' '
mains an open question how these parameters can be opti- =[¢*—fwW(&)]19" (x), (6)

mized adaptively on-line withow priori knowledge of the

training task[15]. Within this limitation, we find that the where the only user adjustable parameter is the learning rate
optimized adaptive back-propagation can significantly re-;. One can readily see that each of the three terms in the
duce training time in both regimes by efficiently breaking theback-propagation Weight update p|ay3 a different role. The

symmetry between hidden units and by providing faster exdifference §* between the student output and the target to-

ponential convergence asymptotically. gether with the learning rate determines the overall size of
the update of all weight parameters by specifying how
Il. DERIVATION OF THE DYNAMICAL EQUATIONS closely student and teacher are matched. The input véttor

. . ) discriminates between the weights leading to different in-
The student network we consider is a normalized soft- 9 g

committee machine, consisting Kf hidden units, which are puts. However, onhg'(x), i.e., the derivative of the trans-
connected tN-dimensional inputs by their weight vectors fer functiong(), breaks the symmetry between different hid-

. o . . den units. The fact that a prolonged symmetric phase can
W= {.Wi} (i=1... ’K)'.A" h|(_dden umts_ are cqnnected to exist indicates that this term is not significantly different over
the linear output unit with arbitrary but fixed gajnby cou-

. . e o the hidden units for a typical input in the symmetric phase.
plings of fixed strength. The activation of any unit is normal- The rationale of the adaptive back-propagation algorithm
ized (by the inverse square root of the number of weightde

. . ! . . fined below is therefore to alter tlgg term in order to
g?;;rﬁgjggsi:ggggﬁ dté?r:?g(f)vtvr:ggiﬁguv:zlﬁj]:]éi;?ozeo?%i)nummagnify small differences in activation between hidden

! ; e units. A simple way of enhancing these differences is b
ber of hidden units. Note that this is in contrast to most other, b y g y

. i _ , altering g’ (x;) to g’'(Bx;), where 8 plays the role of an
o et oo o pd Ve “emperatre.” Vanyingschanges the ange of i
' 9 tden unit activations relevant for training, e.g., fgr>1

optimal learning rates. The implemented mapping is therel'earning is more confined to small activations, when com-
fore '

pared to gradient descen8€ 1), i.e., the training process is

y K 1 y K effectively “frozen” for larger activations. One could also
f = —W.&|=—2 X)), 2 absorb this modification into gradient descent with a site-
w(8) JK Z‘l g YN ¢ JK 21 9. 2 and activation-dependent learning rate, making it more obvi-
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ous that adaptive back propagation deforms the search spatask. We note that the variance of the input distribution
spatially. The adaptive back-propagation learning rule ismerely rescales the length of the order parameters and the

therefore learning rate byo? and can therefore be set to one without
loss of generality.
AP, B WH, £, (M) = sty (BxI) & If we interpret the normalized example numhes u/N
— as a continuous time variable, the update equations for the
=nof &, (7)  order parameters become first-order coupled differential
_ ) _ equations
with 6 as in Eq.(6). To compare the adaptive back-
propagation(ABP) algorithm with conventional gradient de- dR, —_
scent(GD), we follow Ref.[2]. As we are interested in the do = O Yn) s (9a)
typical behavior of our training algorithm we average over
all possible instances of the examped his average is most Qi . .
conveniently performed implicitly by averaging over the —”:n(ﬁﬁxj+5{‘xi>{xy}+ 7,2<5(‘5(‘>{X e (9b)
Gaussian distribution of the activatiors (X, , . . . Xx) and @ ' '
y=(Y1, - ..,Ym).- The Gaussian distribution has zero mean

C 17 ) 3 All the integrals in Eqs(9) and the generalization error can
as(x;)¢=(Yn)¢=0 and a covariance matrixwhose compo- T ;

! e be calculated explicitly if we choose the error function
nents are given by the order parameters describing the over-", =™ Hox/\2 the si idal activation funci
laps between student and teacher nodes: g,(x)= erf(vx/v2) as the sigmoidal activation function

with arbitrary gainv. For the exact form of the dynamical
o2 equations and the generalization error, we refer the reader to
(xixj)§=WWi-WjEQij , (88  Appendix A. We only mention in passing that the sigmoidal
gain v merely rescales all order parameters and the learning
o2 rate byv?, whereas the output gaiprescales just the learn-
(Xi¥n)e=~Wi-B,=Ri, (8p)  ing rate byy2. In the following both are therefore set to one
N without loss of generality.

2
<ynym>§:U_Bn' B, =Tom. (80) Ill. NUMERICAL INTEGRATION
N OF THE DYNAMICAL EQUATIONS

The generalization errogy, measuring the typical perfor- The differential equations can easily be integrated nu-
mance, can be expressed in these variables only. We can alswrically for any number oK student andV teacher hidden
rewrite the update equatiorig) in W, as equations in these units. For the remainder of the paper, we will, however, fo-
order parameters and ti@; andR;, become the new dy- cus on the realizable cask £ M) and uncorrelated isotropic
namical variables, which are self-averaging with respect tdeachers of arbitrary length,,,=T J,m-

the randomness in the training data in the thermodynamic The dynamical evolution of the overlagk; andR;, fol-
limit (N—), whereas thel,,, are fixed and given by the lows from integrating the equations of moti(®) from initial
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FIG. 1. Dynamical evolution of(a) and(c)] the student-student overla@s; , [(b) and(d)] the student-teacher overlaBg, , and(e) the
generalization error as a function of the normalized example numlber a student with three hidden nodes learning an isotropic three-node
teacher T,,m=93.m). The learning rate;=0.03 is fixed, but the value of the inverse temperature vaigsand(b)] =12 and[(c) and(d)]

B=1 (gradient descet
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conditions determined by th@andom initialization of the  hidden unitsT, and the user adjustable training parameters:
student weightdV;. For random initialization the resulting the learning rate; and the learning temperatug
norms Q;; of the student vector will beO(1), while the
overlapsQ;; between different student vectors, and student- A. Symmetric phase and onset of specialization
teacher vectorR;,, will be only O(1//N). A random initial- N . . .
ization of the weights and biases can therefore be simulated Numerical Integration of the equations of motion for a
by initializing the normsQ; , and the normalized overlaps range of learning scenarios shows that the _Iength of_the sym-
Qi =0 /0.0 andR =R /VO T from uniform dis- metric phas_e depends on the number of hidden lm,ltshg
i i <] in— "N iinn anisotropy in the length of the teacher vectors, the choice of
tributions in the[ 0,1] and[ — 10 '2107*?] intervals, respec-  the user adjustable parameteysand 3, and the anisotropy
tively. of the initial conditions. If we assume that the initial condi-
In Fig. 1 we show a typical difference in the evolution of tions are random anid is fixed, the trapping in the symmet-
the overlaps and the generalization errorfor 12 and8=1  ric phase is especially prolonged by isotropic teachers and
(gradient descepfor K=3 and »=0.03. In both cases, the gmga|| learning rates.
student is drawn quickly into a suboptimal symmetric phase, |nitially, we will therefore study the dynamid$) analyti-
characterized by a finite generalization erfBig. 1(€)] and  cally in the symmetric phase for isotropic teachers in the
no differentiation between the hidden units of the studentsma||_,7 regime, where terms proportional ¢ can be ne-
The student norm®; and overlapQ;; are similar[Figs.  glected. Later, the effect of a finite learning rate, i.e., includ-

1(a) and Xc)], i.e., the students are highly correlated with ing 72 terms, will be studied analytically for sma# and
each other. The overlaps of each student node with a“\umerically for arbitrarys.

teacher nodeR;, are nearly identicalFigs. 1b) and 1d)],
i.e., each student unit imitates all teacher units with similar 1. Truncated equations
success. The student trained by GPBigs. 1c),1(d)] is
trapped in this unstable suboptimal solution for most of the]c
training time, whereas ABFFigs. 1@ and Xb)] breaks the
symmetry significantly earlier. The convergence phase is

The truncated equations of motion have only one physical
ixed point, given by

characterized by a specialization of each student nodes to a * _Ck = T (119
. . . QO 0 K(1+T)=-T'
particular teacher node, which corresponds to an evolution of (1+T)
the overlap matrice® andR to their optimal valuerl, ex-
cept for the permutational symmetry due to the arbitrary la- e Q*T T
beling of the student nodes. Ry =S = K~ TGS ol (11b
Examining the decay of the generalization error in Fig. [K( )= TI

1(e) more closely, one can see that the ch 12 b- L . .
© y geel2 is su which is independent o8 and therefore identical to the one

optimal in this regime. The student trained wijh+=1 con- . . a . .
verges faster to zero generalization error. In order to opti:Obtalned in[2] for T=1. The fixed point can be understood

mize both the learning temperatyseand the learning rate in geometrical terms: the student weight vectors are confined

simultaneously for both phases of the learning process, th t_he sqbspace spanned by the teac;her we|ght_ vectors and
eir projection onto each teacher weight vector is identical.

symmetric and the convergence phase, we will examine th : ) L ; !
y g b owever, this symmetric solution is an unstable fixed point

equations of motions analytically in the following section. : . .
d y y 9 of the dynamics and the small perturbations introduced by
the generically nonsymmetric initial conditions will eventu-

IV. ANALYSIS OF THE DYNAMICAL EQUATIONS ally drive the student towards specialization.

In the case of a realizable learning scenao<M) and To study the onset of specialization, we expand the trun-
isotropic teachersT,,=Td,,) the order parameter space cated differential equations to first order in the deviations
can be very well characterized by similar diagonal and oft-d=Q—Qg, c=C—Cg, r=R—Rj, ands=S-Sj from
diagona| elements of the Over|ap matri@gnd R, justify_ the leEd-pOlnt ValU9$11). The linearized equations of mo-

ing the ansatz tion take the formdv/da=M Tv, wherev=(r,s,q,c) andM
is a 4X4 matrix whose elements are the first derivatives of
Qij=Qd;+C(1— ), (109 the truncated update equatio(B2) at the fixed point with
respect taw. For the onset of specialization only the modes
Rin=R&i,+S(1- &) (10  with positive eigenvalue are relevant, being amplified by the

dynamics. For them we can identify the inverse eigenvalue

for the student-student overlaps afapart from a relabeling as a typical escape time from the symmetric phase.
of the student nodestudent-teacher overlaps, respectively. For the truncated equations of motion, we find only one
As one can see from Fig. 1, this approximation is particularlyrelevant perturbatiojsee Appendix B 1 a, EqgB6) and
good in the symmetric phase and during the final conver{B7)] with an associated eigenvector implyigg=c=0 and
gence to perfect generalization. s=—r/(K—1), i.e., a pure rotation of the student weight

The reduction of the number of order parameters fronmvectors inside the subspace spanned by the teacher weight
O(K?) to just four simplifies the differential equations and vectors towards the teacher unit they will specialize on. This
the generalization error significant(gee Appendix B This  can also be confirmed by a closer look at Fig. 1. The onset of
allows us to analyze the learning dynamics exactly as a funcspecialization is signaled by the breaking of the symmetry
tion of the size of the network, the length of the teacher between the student-teacher overlaps, whereas significant
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differences from the symmetric fixed-point values of the stu- s
dent norms and overlaps occur later. The escape eigenvall ]
is .

77,3T2 (12) 1—
VK(L+T)-T[K(1+T)+BT%¥? ]

Maximization of AP ) with respect tog yields 0o

alm

No(B)=

BoptzzK(lT+ 7 , (13 FIG. 2. (a) The symmetric fixed-point valud®*, Q*, andC*

of the order parameters are shown as a function of the learning rate

n atK=5 andT=1 for B=1. The values of the order parameters
i.e., the optimalB scales with the number of hidden units and diverge for n— 54 (see the tejt (b) For the same parameters, the
also grows proportionally to T/ for small teacher lengths. relevant eigenvalues,; ,\, (see the tejtof the linearized dynamics

The optimized escape eigenvalue is around thelearning-rate-dependergymmetric fixed point explain
the divergent behavior as,(74)—0. The maximum in\4, the
4\/5 7T eigenvalue that drives the specialization process, defines the opti-
AP BOPY = mal learning rate.

97 JK(1+T)VK(1+T)-T
3. Numerical finite-n analysis

23 [K(1+T)+T]3? _
9 . (14 In Fig. 2@ we show the order parameter values at the
TVK(1+T) fixed point, which are characterized b@*>C* and
o ] ) R* =S* for finite-y values. WhereaR* is nearly constant
Trapping in the symmetric phase is therefore for very smallyer 5 wide range of learning rates, the valueQ@¥ in-

learning rates always inversely proportional to the leamingreases an@* decreases rapidly. In fact, asapproaches a

rate ». It is interesting to study two limiting caseK:—<,  cortain value, termed herg, the values of the order param-

i.e., large networks, an@i— 0, i.e., small teacher weights or garg diverge.

nearly linear functions. In these limits, one finds that the This pehavior can be understood by linearizing the dy-
. 2 2 .

escape eigenvalue ;< 1/K® (A= T%) for GD, in contrast 10 namics around the fixed point and analyzing its eigenvalues

A= 1/K (No<T) for optimized ABP, respectively, i.e., in these [see Fig. 2b)]. We find two eigenvalues that are always

limits the time spent in the symmetric phase can be reducefgative and of large magnitude and are therefore irrelevant

=\t

by an order ofK or 1/T. to the long-term behavior of the dynamics. For the other two
_ eigenvalues one finds that;>0 and A,<0 for small to
2. Small- expansion intermediate learning rates. The eigenvector associated with

Numerical integrations of the differential equatioi#st) N4 is in fact identical to the one found for fixed points with
for larger learning rates indicate a reduced optimal value oR* =C* and corresponds to a pure rotation and instability in
B, with the ansat£10) still valid. It is therefore desirable to R-S space. The eigenvector &% is also very similar to the
analyze the symmetric phase for finite learning rates. eigenvector of the eigenvalue that caused the instability of

Analytically, we can expand the full set of equatiqB®)  the Q* =C* fixed point in theQ-C space. For increasing
to first order inv=(r,s,q,c) around the fixed point of zeroth learning rate, we first find a global maximum fag at the
order(11) and find its first-order correction ip by solving ~ optimal learning rate;°?(3). For even larger learning rates,
the resulting set of linear equations. The new fixed poinwe find different generic behaviors, depending on the values
found is still characterized b@* =C* and R*=S* [Eq. of the parameter&, T, and 8. In general, there are two
(B8)]. This is in contradiction to the numerical results, which candidates for a maximal learning raig,., identifiable in
predict a fixed point withQ* >C* andR* =S*. This con-  Fig. 2b). The first, 4, corresponds to., becoming posi-
tradiction can be resolved by studying the linear dynamicgive, causing an instability ifQ-C space and diverging val-
around the new fixed point. An eigenvalue that was marginalies of the order parameters. The other candidate is given by
(A,=0) for the truncated equations of motions acquires dhe learning rateys, where\; turns negative and the fixed
positive contribution ofO(%?) [Eq. (B9)]. The mode asso- point becomes attractive. One can identify two phases
ciated with this eigenvalue increases differences betvi@en 7s<mny4 and n4> 7 (for which 55 does not actually exist
and C, leading primarily to a growth of the student weight since the fixed point vanishes abowg). However, in the
vectors outside the subspace spanned by the teacher weightlowing we will not distinguish between these two phases,
vectors(see Appendix B 1 £and no specialization. As these but simply defineno,=min(7y,7y).
differences are typically large for random initial conditions  In order to estimate the potential gain by using ABP in the
(unlike differences inR and S), this mode will drive the finite learning rate case, we optimize the dynamics with re-
student quickly away from the fixed-point characterized byspect to the learning rate under the constrain8=1 (GD)
Q*=C* to one withQ*>C*, where the student will be and contrast it with results obtained by optimizing with re-
trapped until specialization betwedR and S will occur  spect to both the learning raggand the inverse temperature
eventually. Unfortunately, this fixed point cannot be studiedB (ABP) for a range oK andT values. In Fig. 3 the optimal
analytically, but can, however, be studied numerically. value of 8 is shown as a function of botd andT. Figure
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FIG. 3. (a) The optimal inverse temperatug®”is shown for varioud values(see the legendas a function oK. For sufficiently large
values ofTK, 8% grows with K. (b) Here 8°is shown as a function of for variousK values(see the legend For smallT we find a
power-law increase gB with 1/T with an exponent that approaches 1 Ta small enough.

3(a) shows thaﬁc’pt increases for growing network sike as Having identified the two interesting regimes where the
is expected from the small learning rate analysis. Howevergptimal inverse temperature deviates significantly from its
the size of 3°" grows significantly slower and becomes de- GD value, small teacher weight vectdfs-0 and large net-
pendent on the value of the produtK. For TK>1 and works K—o, we investigate the differences in optimal dy-
K—o one findsB°% /K, which has to be contrasted with namics for GD and ABP further. In Fig. 4 we show the
the previously predicte@@®'xK [see Eq.(13)], due to the behavior of both the optimal learning rai€” [Figs. 4a)—
influence of finite learning rates. 4(c)] and the resulting optimal escape eigenvalQ¥ [Figs.
Similarly, as shown in Fig. ®), 8°°" grows for decreas- 4(d)—4(f)] for GD in comparison to ABP for variouk-T
ing teacher lengthg but remains constant for largé as  scenarios.
predicted previously. We find power laws fdr—0, with The optimal learning rate°®®(T) of GD, depicted in Fig.
exponents dependent on the valueTef. For TK<1, how-  4(a), exhibits a strongl)K-dependent limit for largd and a
ever, the exponent approached , which is identical to the universal limit for smallT. In general,»°°(T) decreases for
theoretical prediction in the smaidj-regime. increasingT and shows its most volatile behavior in the re-

1|
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st dovd o vyl oo g

roon vl s ool
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FIG. 4. () The optimal learning rate;°™ for GD descent as a function af for variousK values shows the most volatile behavior for
0.1<T=10. (b) °?(K) for severall values shows a power-law decay with expone3 in the largeK limit for TK>1. (c) The quotient
of the optimal learning rates of ABP and GD as a functioidbr variousT values shows tha#°"{ 3°") decays even faster with exponent
—1 for largeK. (d) The optimal escape eigenvalue for GD multiplied k% as a function ofT collapses on a universaK¢ independent
curve for smallT and decays rapidly with exponent 2. For laff¢he escape eigenvalue becomes independemt blit acquire a further
K dependenceNK?xK~23)_ (e) The possible gain by using ABP is shown by plotting the quotient of the optimal escape eigenvalue for the
two training algorithms. The advantage of ABP is most impressive for Sathere one can gain at least a factdr il comparison to GD,
depending on th& value (see the legend(f) The same quotient as a function i¢ffor severalT values also shows a power-law gain by
using ABP but with a small exponent of 1/6.
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gion 0.1I=T=<10 and for largeK. These teacher values are
the most reasonable for real learning problems, i.e., in prac-
tice it will be generally difficult to choose a good learning 10°
rate especially for large networks. This picture can be con-
firmed by examining the influence & on 7° for GD as
shown in Fig. 4b). For very smallT, the learning rate ex-
hibits hardly any dependence &6, whereas forTK large

107
AﬂOpt

max

IR ETHT R N

) } // .. Aabp
enough, one finds thajPxK 23, 10° K=5 e ___

The behavior of the optimal learning rate for optimized v AP -

ABP is quite similar to GD. The main difference from GD
can be seen in Fig.(d), which shows that;°?{8°*) decays
faster for ABP, withn°P{(8°P) <K ~1 for large TK. One also T
finds that the optimal learning rate saturates for large- and
small-T values toK-dependent constants. For largethis FIG. 5. The normalized difference between the maximal and
may be explained by the fact that the error is limited by theoptimal learning rated 7%= (7ma— 7°)/ 7° is shown for both
saturation of all units. adaptive back-propagatiom”®” and gradient descent®P for
The optimized escape eigenvalue, which largely deterK=5,100 as a function of.
mines the training time spent in the symmetric phase, is
shown for GD in Fig. 4d), where we have multipliea® by  and R*>Rj . For C*, however, one finds &-dependent
K2 for convenience. For small, one finds thah°’(T) col-  behavior withC* <C} for T<T¢"(K) andC*>C} for T
lapses on universal curve for &l and we find the same >TS"(K), where T« K3 for GD and TS™«<K Y2 for ABP.
power-law behavior as predicted in the smallanalysis We furthermore find that the optimal symmetric fixed point
(AP T?/K?) [see Eq(12)]. For largeT, one also finds that for ABP is always significantly closer to the zero learning
A" becomes increasingly weakly dependent Dras ex- rate fixed point than for GD.
pected. However, it also shows a furtherdependence due Before we turn our attention to the optimization of the
to the decay of the optimal learning rate and one fin#®  dynamics in the convergence phase, we would like to sum-
x 7°PYK 2, marize the results obtained so far and put them in the context
To highlight the possible gains of using ABP, of previous work. Unlike the small learning rate regime,
NOPY BOPY)/N\°PY(1) is plotted as a function of andK in Figs.  which has been studied previously for both GI) and ABP
4(e) and 4f). In Fig. 4(e) one finds for small a gain[16] of  [14], we find that the amount of training time spent in the
/T for TK<1, which was predicted from the smaflanaly- ~ symmetric phase actually scales worse tizrfor the opti-
sis[see Eq(14)]. For largeK [see Fig. 4f)] we also find a mal choice of learning parameteisee Table Il for an over-
power-law gain inK for the optimized dynamics, but only view of the numerical values of the power law$his seems
for TK>1 and with an exponent that is only 1/6, much to be mainly due to the need for reducing the learning rate
smaller than the value of 1 predicted previously in BEigl).  with increasingK. This reduction is arguably caused by the
This can be attributed to the slower than predicted increaskigh correlations between student nodes inside and the
in 8%t and to the smaller optimal learning rate for ABP in (mainly uncorrelatedincrease of the student lengt@$ out-
this regime. side the space spanned by the teacher vectors, leading to a
Of arguably further importance for training is the sensi-discrepency between student and teacher output that in-
tivity of the choice of the learning rate, especially in the creases significantly faster thah for large enoughT. For
sense of how well the maximal learning rate is separatet— (TK>0), one also finds that the gain, by using the
from its optimal value. Therefore, the normalized difference
between the maximal and optimal learning rate;2 TABLE |. Symmetric fixed points of the optimized dynamics

ma: . . .
= (Ve nopl)/nopt is compared for ABP and GD as a fuxnc- for both the gradient descent®® and adaptive back-propagation

tion of T for two K values in Fig. 5. Whereas the optimal and A"S" are compared in the limis—0 andK— to the theoretical
maximal learning rates are well separated forTaflandk) ~ Yalues for #=0 by calculating their normalized difference
for optimized ABP, this is not the case for smalifor GD, ~ P*=(P*~P5)/Pg5 . These differences exhibit either power-law
where one finds a power-law decayzbfr](’pt with an expo- behavior, with algorithm-dependent exponents, or saturate at con-

max . stant limits, whose absolute value may be parameter dependent and
nent that approaches 2/3 folK<1 from above, making an '

. . . . . .. are referred to byc(). In the limit T—c all parameters exhibit
optimal selection of the learning rate increasingly more d|f—finite limits and are therefore omitted®(K) is defined by
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Finally, we would like to compare the symmetric fixed 0
point for th(_e optimized dynamics for finite Iearning_rate with T—0 (TK<1) K— (TK>1)
the theoretical value§ll) for the truncated equations. In- GP PBP GP APBP
stead of illustrating the behavior graphically, we have sum-
marized the results in Table I. We have found it most illu- &* c(K) T0333 K642 K 0482
minating to compare the normalized difference* &+ —c(K) — 70333 K 0332 K~0-80t1
=(P*—Pg)/Pg for all relevant order paramete(sote that R+ TLoest Tissl K 0352 K050t
the identityR* = S* is preserved for finitey) in the various et K 0312 K050 1

s

limits. In general, one finds for both algorithms it > Qg
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TABLE II. For T—0 andK—< the optimized dynamics in the The matrix M of the resulting system of four coupled
symmetric phase show power-law behavior for both the gradienfinear differential equations imn=T—R, q=T—Q, s=S,
descentA®" and adaptive back-propagatiotf®”. The table shows andc=C has two pairs of eigenvaluea {,and\;,) that
the optimal learning parametesg™ and 8, the optimal escape ei- are solutions of quadratic equatiof®13). The dependence
genvaluer®”, and the normalized difference between maximal andof these eigenvalues on the leaming rate is illustrated in Fig.
optimal learning rateA 7= (77max—7"")/ 7°. The errors in the 6(a) for K=3 andT=1. The eigenvalues; 4 are linear iny,
exponent are given for the last §|gn|f|cant digit only ar)l refers whereas\ , , have higher orders iy. One further can distin-
to constant limits, whose value is dependent on a parameter. guish between two slow modes associated with eigenvalues
N1 and A3 and two fast modes associated with eigenvalues

AJDHO (TK<J14)ABP jezw (TKi}\ép Ao and Ay, WhiCh _are_ne_g_ative for all I_earning rgtes and
whose magnitude is significantly larger in the region of in-
B 1 T-Loest 1 K 0502 terestingzn. The fast modes decay quickly and their influence
7°P - c(K) K—067:3 | ~-1.00t1 on the long-time dynamics is negligible. The dependence of
Ap2Pt T0.68+3 c(K) c(T) c(T) the two.relevant e!genvalueg and\; on 7 and.ﬂ is more
)\ 0Pt T200E1~2  TLOGEl -2 K -266:4 | —250+1 closely illustrated in Fig. @) in the same learning scenario

and for two 8 values. As mentioned, the eigenvalkg is
negative and linear iny, whereas the eigenvalue; is a
nonlinear function ofy and negative for smaly. For large
notK as predicted previously. 7, )_\1 becom(_es posij[i\(e and traini_ng does no? converge to the
We have furthermore relaxed the constrdint 1 used in  ©OPtimal solution defining the maximum learning rajg, as
these works and have found that the optimal learning paramt1(7ma)=0. For all <7y, the generalization error decays
eter values change significantly in the most relevant regiofXponentionally toeg =0.
of teacher lengths, which makes it difficult in practice to _!n order to identify the optimal convergence eigenvalue
choose optimal learning parameters without prior knowledge *, which is the eigenvalue associated with the slowest de-
or estimation of the teacher lengths. For snialvhich cor- ~ cay mode, we expand the generalization error to second or-
responds to nearly linedbut boundepirules, one finds that derinr, g, s, andc [Eq.(B10)]. We find that the eigenvector
the specialization process is furthermore slowed down by 4B14) associated with the linear eigenvalug is orthogonal
factor of 1/T2 for GD learning. This is arguably due to the t0 the first-order terms in the generalization error and there-
fact that the symmetric fixed point is already a very goodfore cannot contribute to their decay, but controls only the
approximation to the true function and information about thedecay of second-order terms with 2 The learning rate;°™
nonlinearities is scarce. In this regime the optimal choice ofhat provides the fastest asymptotic decay rnef€ of the
B°P 1T helps the student significantly in breaking the sym-generalization error is therefore given by the condition
metry by reducing the region of hidden unit activation rel- .
evan¥ foyr traininggand favgoring rotational over longitudinal NP=|min[maxx1,2x3)]]- (15
changes. The gain achievable in this regime is of ordér 1/

optimal ABP choice of3°"x K, is only a factork /¢ and

n

_ o This means eitherk;(7")=2\3(7™) or min,(\y) if
B. Convergence to optimal generalization N1 (72> 2x5( 7P, where 2P is the learning rate at the

In order to predict the optimal learning ra#® and in-  minimum of X ;. Examples for both two cases can be seen in
verse temperaturg° for the convergence phase, we linear- Fig. 6(b).

ize the reduced set of equations of motigB2) in For givenK, one finds that for GD g=1) the optimal
{R,Q,C,S} around the zero generalization error fixed pointlearning rate is at the minimum af; for T<T¢"(K) and by
R*=Q*=T andS* =C* =0 (see Appendix \1=2\3 otherwise, wherdS"(K) is a function weakly de-
0.04 ;
0.4 As(1) /’ (a) J o As(1) ——-A3(BPY) (b)
- Aq(1) / 1 - ML) — () H
0.24—— M(1) / ] ;
1—2(1) / 0.0 ;
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FIG. 6. (a) The four eigenvalue; for gradient descentd=1) as a function of the learning ratg at K=3 andT=1. (b) The two
relevant eigenvalug@ee the teyth; and\ 5 in the same scenario values8f 8=1 andg8= 8°P'=1.8314. For comparison we ploA2 and
find that the optimal learning ratg®' is given by the conditior\ ;=2\ for 8°°, but by the minimum o# , for 8=1.
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TABLE Ill. For T—0 andT— the optimized dynamics in the T/K<O(1). Thequalitative difference of learning for finite
convergence phase show power-law behavior for both gradient degnd infiniteK in the largeT limit will become clear later.
scentA°P and adaptive back-proptaganom“ - The table shows Again, we would like to assess the potential benefits of
the optimal learning parameterg”™ and 8, the optimal conver- — Agp gyer GD. Note the discrepency between our results and
gence eigenvalug®", and the normalized difference between maxi- those previously presentd@] for GD in the convergence
mal and optimal learning rai 75 = ( 7ma— 7°)/ 7°P. () refers h Ff) th Y P! | cage=1 wh . tg b
to constant limits, whose value is dependent on a parameter. P ase_ or the Spec'? case=1, where an approximation by

reducing the dynamics to thegr space was employed, pro-
T-0 T (K finite) T—o [TK 1= O(1)] ducing.inaccurate results. -
AGD  JABP  4GD  4ABP AGD _AABP In Fig. 8 we therefore show the behavior of both the op-

timal learning ratep°P'[Figs. §a) and §b)] and the resulting

- Y 1 . . )

B 1T 1 T 1 3 optimal convergence eigenvalié™ [Figs. §d) and §e)] for
opt K Kl Kl Tl/2 Tl/2 . X .

7 opt 771 C(llz) " " . . GD in comparison to ABP as a function af for several

Apax T T T T T T values ofK, including the dominant term foK—~. The

NPC TR TR T2 772 TR TR gptimal learning rate;®P(T) of GD depicted in Fig. &) has

a universal limit of7 for small T identical to the symmetric
phase. For larg@ the limit becomes strongly dependent on
pendent orK andTgm(oc)z_’]_.Z?SO[see also Fig. @) ]. For K. Again, there exists a qualitative difference between finite

optimized ABP, where the decay rat€(8) has been maxi- K, where one finds analytically®®=K for T—c and infi-

mized with respect tg, the optimal learning rate is given by nite K, where 7P \[T.

the root of\;— 2\ 5 for all values ofT. The quotient between the optimal learning rates of ABP
Both these optimizations are analytically unfeasible forand GD in Fig. &) shows no significant difference, in stark

arbitrary K and T. However, for some special cases furthercontrast to results in the symmetric phase. In general, one

analytical progress can be madé—», T—o, and T—0. finds that the learning rate for ABP is larger than for GD

These cases are studied in detail in Appendices B 2 a—B 2 &hen3°>1 and vice versa. For small the optimal learn-

The resulting power laws will be referred to in the discussioning rate approachesg3 for infinite K [Eq. (B220] with

of the appropriate figures and are summarized for all relevarminor corrections for finitdk [Eq. (B260)]. For largeT, the

scenarios in Table 11l difference is a factor of 42 for infinite K, whereas they are
As in the symmetric phase, one expects the largest gairigentical for finiteK.
by using ABP in regions of-K space, whergg°P deviates The kink in the curves aroun@i=1 can be explained by

significantly from 1. In Fig. 7 the optimal value g8 is  the fact that the condition that defing8” for GD changes at
shown as a function of botk andT. Figure {a) shows that that point (see above The corresponding critical teacher
B°is only a weak function oK and does not change its value TS"(K) is shown in Fig. &).
order for K—oo unlike in the symmetric phase. The only  The optimized convergence eigenvalue, which largely de-
significantK dependence is found for largeand smallK. termines the training time spent achieving an acceptable gen-
This should be contrasted to the strohglependence of eralization error, is shown for GD in Fig.(@®, where we
B°P depicted in Fig. ), where the theoretical results for have multiplied\°* by K for convenience. For small, one
K—o are included as well. For small one finds to leading finds that\°" collapses on a universal curva ¥<T?/K),
order B°P'=2/T, independent oK, whereas a strong depen- similar to its symmetric phase behavior. For large the
dence ofK on B°is found for largeT. For finite K or  behavior for\°" depends significantly on the order kif as
T/K>1, one finds B%P«T 3 whereas B°%P'~1/3 for that of the learning rate. Analytically, one finds firfinite

05— 10—~
0.01 —--- Toeo 102
0.1 - 2ol 104 ——
10° T T T T T
10' 10° 10° 10 10° 10* 10° 10° 10*

K T

FIG. 7. (a) The optimal inverse temperatu®® is shown for variousT values(see the legendas a function oK. It exhibits only a
significantk dependence for large. (b) 8°Ptis shown as a function 6F for variousK values(see the legendincluding the dominant term
for K—o. For smallT, we find a power-law increase @ with 1/T independent oK. For largeT, the behavior of3 strongly depends on
K.



56 ON-LINE LEARNING WITH ADAPTIVE BACK- . .. 3435

102? o ToF.'t
nopt = chnt. ———
10'—:
] 1 TTTTW T TRy~ T =T Ty T TIvR T Ty T Timme HHI- 1.2t
! 2 s .
10* 10° 10° 10° 10 10* 10° 10° 10° 10" 10 10 10 10
T K
10" w 5 e
Ale) 2— 3 (f)
g ] [y 10"
10" = 3
AK s 1 107
108 E opt
; E Anmaux 4
3 1 10°3 \
10°4 3 3 ',/ AR NN
; E ] 1/ -5 [ Y-
g = TeROTER L 10'g/ — o0 00—
10" LLLLL EREALL| BERNL BRRILLY SUERELBRRL RRLLL ERRLL 10 TN TTTTTTTT T Ty 1TTOr T VW T B TTITIE T T TN TRy TGN T T T
10° 10% 10° 10° 10° 10* 10°* 10° 10° 10’ 10* 10° 10° 10° 10*
T T

FIG. 8. (a) The optimal learning rate° for GD as a function off for variousK values shows a significant increase for lafgandK.
(b) The quotient of the optimal learning rates of ABP and GD as a functidnfof variouskK shows no significant difference in the learning
rates of the two algorithmgc) The teacher lengtfic™(K), where the optimal learning rate changes from the minimum,ab the root of
N1— 2\ 3, and the teacher lengffP{K), where the convergence ratetakes its global minimum. The latter coincides wgh’'=1 for all
K. (d) The optimal convergence rate for GD multiplied Kyas a function ofT collapses on a universakfindependentcurve for smallT
and decays rapidly with exponent 2 as in the symmetric phase. ForTatge convergence rate also decayd jrbut with an exponent that
seems to b& dependent(e) The possible gain by using ABP is shown by plotting the quotient of the optimal convergence eigenvalue for
the two training algorithms. The advantage of ABP is most impressive for siallhere one can gain K-independent factor T/in
comparison to gradient descent. For lafigéhe gain isK dependent but constant ih (f) The normalized difference between the maximal
and optimal learning rata 5%, is shown for both adaptive back-propagatidA®” and gradient descett®P for K=5 as a function of
T. For both small and larg€& one finds power-law behavior.

and TK>1 that\° s actually independent df and de- Wwith a maximal separation around 30% for both algorithms,
creases proportionally t6%2 For large T andl/K= O(1), which is significantly smaller than the separation in the sym-
on the other hand, the scalingXs:1/(TK). metric phase. For both large and sniBllwe find decays of

To highlight the possible gains from using ABP, the normalized gap if. For largeT, the decay is propor-
NP BOPY/\°PY(1) is plotted as a function OF in Fig. 8e).  tional to 17T for both algorithm, with slight differences in the
For smallT, one finds as in the symmetric phase that ABPconstant prefactor. For small, however, the behavior is
gains a factor 1, with only a very weak< dependence due algorithm dependent, with a decay proportionalltéor GD
to corrections in the ¥ dependence for ABP. For larde proportional to\/T for ABP.
one finds only a constant gain for ABP, which ranges be- As in the symmetric phase, the extension of the analysis
tween 1.299 and 2.828 depending on the valueb ahdK, to the full R-Q-S-C space and arbitrar{f values has re-
althoughB°P! deviates significantly from 1 for finit&. vealed several insights. The normalization for the soft-

A question one could ask is which teacher leng®'  committee machine chosen here leads to the optimal learning
maximized\ °P* for givenK. This turns out to be identical for rate for both algorithmgand the optimal inverse temperature
both algorithmg B°P(T°P)=1] and its dependence dfiis  for ABP) being only weakly dependent dt in most practi-
shown in Fig. &c). Although only of academic interest as  cal learning scenarios, suggesting a similar scaling for ap-
is given by the rule to be learned, it nevertheless presentglied networks. For larg&k one finds furthermore that the
some interesting insights. ABP effectively deforms thetraining time scales witkK in almost all cases, in contrast to
search space via the single paramegieto compensate for the symmetric phase, reflecting the fact that the student hid-
the anisotropy of the generalization error surfaceTAtno  den units have already specialized on a particular teacher
useful deformation can be obtained by usjfg 1, leaving  hidden unit.
room for speculation whether isotropy is recovered. Other For extreme values oF, one finds further interesting ef-
methods for deforming the search space based on informdects. For smalll, GD training is slowed down by a further
tion geometry have been introduced recently and involvdactor of 1/T2, which can be reduced to a factor ofTLby
more complicated learning rules, which may not always bghe optimal choice ofg®"'x1/T, similar to the symmetric
tractable[5]. phase.

In Fig. 8f) the normalized separation between the maxi- For largeT, one has to distinguish between two regimes.
mal and optimal learning rate shows for both algorithms onlyFor finite K, both the mapping of the network and the error
a very weak dependence &nin comparison td. The gap is  signal become increasingly discrete in this limit, leading to
largest forT= O(1), the region of most likelyT values, an architecture similar to a committee machine. In this case,
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the error signal is ofO(1/K) leading to a rescaling of the the squared student leng@” «1/K at the symmetric fixed

learning rate withK, in order to keep the weight update Point, pushing the student hidden nodes into the linear region

constant for all network sizes, making the convergence ratef the sigmoidal activation function, where differentiation is

independent oK. The increasingly discrete nature of the More difficult. o _

error signal, however, seems responsible for the decrease jn _Th||s picture is aI:cfered s(;gmﬁcarr]]tly dwhen acg:our:mng for |
~3/2 ; _finite learning rate effects, due to the decrease in the optima

the convergence rate by =" for both algorithms. The pos learning ratep°P with K, beyond the rescaling implicit in the

sible gain of ABP stays constant in this limit, in spite of the T N .

significant scaling ofg%Plc T~ 13 network normalization. This rescaling assumes an unnormal-

In the limit whereK grows éimultaneously witiT, one ized network output ofO(\/R) and a typical squared error

i L . . . : f O(K), which is appropriate in the case when the hidden

finds a qualitatively different behavior. This can be explame nits of both the student and the teacher network are uncor-
.by the smoothness of the network ogtput and .the EITOr SIgNgh|ated. However, in the symmetric phase this is not the case
in this case due to the fact that hidden units outputs arg, e s dent network leading to errors that grow faster than
discrete but uncorrelated, giving rise to a Gaussian outpub(K) and making a decrease in the learning rate necessary.

distribution (central limit theorem The significant reduction of the learning rate may also be
associated with the need to limit the proportion of the student
V. SUMMARY AND DISCUSSION length outside the space spanned by the teacher for Kurge

The actual training time spent in the symmetric phase

This research has been initially motivated by the domi-therefore scalesxK®3 for GD andr«K%? for ABP, reduc-
nance of the suboptimal symmetric phase in on-line learningng the benefit of an adjustable temperatur&. One also
of two-layer feedforward networks trained by gradient de-finds that the scaling for the optimal temperature changes to
scent[2]. We proposed an adaptive back-propagation train8°" K in this limit.
ing algorithm[Eq. (7)] parametrized by an inverse tempera- For the convergence phase one finds that the training time
ture B. For B=1 standard back-propagation or GD is scales withK in almost all cases, reflecting the fact that the
recovered, whereg8=0 corresponds to a generalized Hebb learning rate musiimplicitly) be rescaled by K as the typi-
rule. cal quadratic deviation between teacher and student output

ABP is designed to deform search space using the singl#icreases proportionally t. The optimal inverse tempera-
parameters. For 8>1, the specialization of the student ture and the optimal gain of using ABP in this regime are
nodes is improved by enhancing differences in the activatio§lependent ofT but remain constant for large due to the
between hidden units. In this region, the achievable learnindfct that each student hidden unit is already specialized on
rate is usually higher than for GD, leading effectively to One teacher unit and the effect of other units in inhibiting
favoring rotational changes of the weight vector over lengttfurther specialization is negligible. o
changes. For @ 8<1, we find the opposite effect, as the ~ These results mean that most of the training time is spent
activation region of the student relevant for training is in-in the symmetric phas¢or search regimefor large net-
creased and the learning rate decreased, causing an enhan¢@rks, at least in learning scenarios with a certain amount of
ment of length changes. Its performance has been comparéymmetry. This suggests that considerably more effort
to GD for a normalized soft-committee student network withShould be directed towards developing algorithms, which can
K hidden units learning a rule defined by an isotropic teachepignificantly reduce the training time in this phase, than to-
(Tom=Té,m) of the same architecture. Furthermore, the in-Wards fine tuning of the asymptotic convergence.
troduction of a natural normalization of the soft-committee
machine leads to more elegant results as it eliminates the B. Small T
unnatural scaling of the learning rate with the input dimen- | the smallT limit, one finds very similar results for both
sionN and, in many cases, with the number of hidden unitshe symmetric and the convergence phases, e.g., the optimal
K, which is a feature of the unnormalized model and sugiearning rate is universallyr for GD, the optimal inverse
gests a similar approach for real wor!d networks. _ temperature has the same scaling behavig¥'¢ 1/T), and

For both relevant phases of learning, the symmetric anghe optimal escape and the optimal convergence eigenvalue
convergence phase, this work extends previous refiltd]  gcqie withT2 for GD and withT for ABP in both learning

substantially by addressing the influence of finite Iearningphases_ This results in a gain of ordeF lih using ABP, for
rates in the symmetric phase and the influence of the teachg(s \ynole training process. ’

lengthT on the dynamics. The analysis identifies three inter-  tha universal slowdown of learning in the smallimit

esting regimes: larg(, small T, and largeT. may be explained by the fact that the learning rule becomes
increasingly linear, resulting in a very flégeneralization
A. Large K error surface between the symmetric and the zero-

generalization error fixed point. The major difference is the
scaling of the relevant eigenvalue with the number of hidden
units K, reflecting the lesser degree of confusion once the
Sidden unit symmetry is broken.

For largeK, the linear analysis of the equations of motion
around the symmetric fixed point for small learning rates
suggests that the trapping time is inversely proportional t
the learning rate and grows<K? for GD [17] and =K for
optimized ABP with3°"=<K. This suggests that for increas-
ing network size it seems to become harder for a student
node to distinguish between the many teacher nodes and to For largeT the picture is not as coherent, which can be
specialize on one of them. This is reflected by the decrease iexplained by the increasingly binary nature of the hidden

C.Large T
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unit outputs. In the symmetric phase, the outputs of the stureliable on-line estimation of optimal learning parameters. It
dent hidden units are highly correlated, whereas the outputfsirther suggests that the selection of individual learning pa-
of the teacher hidden units are uncorrelated, leading to largeameters for each hidden node of the network could poten-
errors between the student and teacher network output thglly be hugely beneficigl10]. We therefore hope that this
scale withK but saturate for largd, explaining the large Work will motivate further research into the efficiency of
changes in the optimal learning parameters for mediuuit on-line learning training algorithms and their systematic im-
also their indifference to further increases Tnonce T is ~ Provement.
sufficiently large.
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leading to a rescaling of the learning rate proportionakto APPENDIX A: DYNAMICAL EQUATIONS

It would be quite interesting to study this limit more
closely due to its similarity to the committee machine. The The generalization error is calculated by averaging the
possibility of tuning the weight function witls between a quadratic loss functior(1) explicitly over the activations
Hebb-like form for3=0 and a Gaussian form for finitg ~ {X,y} (@nd implicitly over all input which are multivariate
may give some idea about successful training a|gorithms foQaUSSian distributed with zero mean and covariance matrix

binary networks. given by

However, throughout our analyses we have implicitly as-
sumed that the decay or increase in the exponential terms = Q R (A1)
outstrips any algebraic variation in the prefactors and all op- RT T/

timizations were carried out under this assumption. This is

reasonable at least for medium valuesTofwhich are most  In the following all averages are taken with respect to this
||ke|y to be encountered practica”y’ but probab|y also fordiStribUtion and making use of the convention that indices
any finite values ofT. For infinite T, i.e., networks with i,j,k,I and n,m label student and teacher nodes, respec-
discrete hidden units, this ansatz is, however, insufficient avely.

the exponential term vanishes and the dynamics become al- The generalization error then takes the form

gebraic ina.

In principle, one could encompass these limiting cases by c _r
incorporating second-order terms of the Taylor series around 9 2K
the fixed points and solving the resulting set of nonlinear K
differential equations by transforming them into matrix Ric- .
cati equations. Although this is in principle feasible, it goes +ij2:1 32("1)]' (A2)
beyond the scope of this paper. '

2(g M KM
— Jo(n,m)—2\/— J,(i,n
M n,gzl 2 ) Miél 2(1.n)

with the integral J,(1,2)=(g(u;)g(u,)), whereu; represent
D. Conclusions members ofx,y} and we denote withy, J4 averages ovel

This paper has shown the learing performance limitavariables with one and twg terms,.respectively. The in';e-
tions of gradient descent in the on-line learning paradigmd'@ J2() can be calculated analytically for the generalized
Within the model studied one finds severe drawbacks of GDEMOr functiong,(u)= erf(vu//2) giving
especially in the symmetric phase, which dominates the
learning process for large networks. The suggested adaptive
back-propagation algorithm generally speeds up the training
process considerably if its extra parameter, the inverse tem-
peratureB, is chosen optimally. It has provided us also with The dependence of the integral on the sigmoidal gagan
some insight into the shortcomings of GD and has outlinethe absorbed by redefining
possible further research directions.

The relaxation of the constraifit=1 has shown that the
optimal learning parameter values change significantly in the
region of usually relevant teacher lengths and between the rescaling that also holds for the other integrals below. To
symmetric and the convergence phase, making it difficult teevaluate an integral explicitly, the full covariance matfiis
choose good learning parameters, i.e., the learningyated  projected into the relevant subspace. For example, the rel-
the inverse temperaturg, in practice without prior knowl- evant elements ford,(i,n) are C;;=Q;;, C;»=R;,, and
edge or estimation of the teacher lengths and the progress,,=T,,. Itis a property of multivariate Gaussian distribu-
made in learning. This should encourage more research intioons [2] that integrals of reduced dimensionality such as

1,012 = Zarcs v"Cro (A3)
2% T \/1+ VZC]_]_\/]."‘ V2C22 .

Eij: V2Cij y
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J>(1,1) are generated from the general foldy(1,2) by the
appropriate constrainign this caseC,,;=C1,=C,,).

The differential equations foR and Q are calculated

similarly and take the form

dR, 7y K :
da :%[ \/%mzﬂ o(h.n,m) = 25 150K

dQ; 7y’ [K &

, (Ada)

K
E I]k+|3(]lk)]
k=1
2\ 2 M
+ %) {K n;_ J,(i,j,n,m)
K K,M
2 (i k) + 2 (i, kl)}
(A4Db)
with the integrals 15(1,2,3)=(g’'(u;)u,g(us)) and

J4(1,2,3,4)=(g' (u1)g' (u2)g(us)g(us)). Again for the

above choice of sigmoidal transfer function, these mtegrals

can be calculated analytically. We find
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$i(B)=1+BCii, ¥ij(B)=BC;
Wi () =i(B) () = i (B) (- )
®.= Yo(B)Cri— 1A B)Coi
' V1A B) '
e 1(B)Coi— 12 B)Cy;
' V1AB) '

C'jj=Cyj—BICy®;+CyxT'],

with (- --) representing eitheg or 1. Again, one infers the
elements of the reduced covariance matrix using the unit
labeling convention and the appropriate dimensionality re-
duction.

One can see that the only role of the gaiins an explicit
rescaling of all order parameters by a faciérand an im-
plicit rescaling of the learning ratg by »? in the differential
equations(A4). The learning rate is further rescaled by the
linear output gain byy?. In combination with the input vari-
anceo?, the overall rescaling for any order parame®eand
the learning ratey becomes

_ _ V2 20.2
P=120?P, 7= YK 7. (AB)
| (123):—M Is (A53)
S T \Wy1) a(B)’ In the remainder of the paper we will therefore set
v=vy=o0=1 without loss of generality.
2 2 -~
J4(1,2’3,4:(E) i ,-( 7 ¢ \3/4 APPENDIX B: REDUCED EQUATIONS
T ¥ 1+C’33V1+C’ .
12P) 3 4 Reducing the free parameters =M and T, =T Snm
(ASb)  with the ansata10) to justR, S, Q, and C simplifies the
where we have conveniently defined generalization errofA2) to
! r{ T 2arcsi R —2(K—1)
€,=—14 arcsin ——=| —2arcsi yarcsi
“om 1+7 JI+QyI+T JI+Qyi+T
. | Q
+(K—1)arcsi m +arcsi m . (B1)

The differential equations fdR, S, Q andC are determined from EdA4) similarly and take the form

— S A (k-1 + , B2

da 'n'K'yl[ VR, \/_ )\/S—o N } (B2a
_ 2

d_S:EQi[So v _Rn-BSC_pRS_ S _ ., [BS Sh} ©25)

da 7K V&% | G e va e

da 7Ky \/ﬁo \/50 \/30 Co m? K2 72 R4
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Sy,—28RC

C S
2arcsin ——| —2arcsin ——| —2arcsi
’( \/Qlcl) ’< Vglsl) ’( \/Rlcl

Ci— S, —
+arcsir( 172 +arcsir< ! 72)

+(K-1)

R Q
—2arcsi + arcsn‘(
’( v 91R1) QA

[ Ry,—2BSC [ 2BRS
—2arcsin ————| — 2arcsi

\Slcl \R]_Sl Cl Sl
C(y,—2pBC S(y,—2BC 2352
+(K=1)(K—-2) arcsir(M)—Zarcsir( M) — csir( a ) , (B20)
Cl \Slcl Sl
dc_4 4 1| ~BSC_Qn—pC? Sn—pRC_ C . ,[Sn Crx ]
da” 7Ky Ve R V2 @ Ve,
4 7 1 [ r{Q 7374) ’( R)’l_ﬁsc) .’<R2_7’374)
+t—=—= 2arcsin ——=——| —4arcsin ———| +2arcsin ——=——
7 K% \y374 o2 VQ2R, Ra
C Sy,—BRC 2(R?+S%)—2y,8RS
+2arcsir6— —4arcsir(i +2arcsir€'8( )=27.8 )
o2 VR, R2
[ Cls [ (Sy1=BRONs [ BS(S+R)ys
+(K—2)| 4arcsi —4arcsi —4arcsi —————
V20, VR2Co VRS,
—4arcsir( S\rs ) +arcsir{ G —2arcs r(—Rn Z'BSC> +arcsir{ %2 y4>
Y, stz CZ \/SzCz SZ
Cys Sys [2BS?
+(K—2)(K—-3) arcsn‘( 2arc3|r< )—arcsw(— , (B2d)
( CZ \8202 SZ
|
where we have for convenience defined ues and eigenvectors of the Jacobian malfixof first de-
y1=1+8Q, 7,=1+2BQ, v;=1+p(Q—C), (rai\cﬁi\t/iii determine the solution of the linearized differential
va=1+B(Q+C), Qu=71+Q, 0O;=7,+0Q, Under the constraint®=C andR=S, which are charac-
teristic for the symmetric fixed points studied analytically,
_ + —BC2, Cy=(1+ —BC2, one finds that the zeroth-order terms and the entries of the
Q2= Y3yat Qn= B 0=(1+Q)7 =4 Jacobian matriM obey the relationghere P, =R, P,=S,
C1=(1+Q)y,—2BC%  C;=(1+Q)y,—2BC?, =Q andP,=C)
— y — y — K—l y
So=(1+T)y1— B  Sy=(1+T)y,— 285, Mio=Mzo, M3ze=Mye, M= ( )May
S,=(1+T)y,—2BS% Ro=(1+T)y;—BR?, Mp4=Myg,  Myp=Myy+(K—=2)My,  Myz=mys,
Ri=(1+T)7,—2BR?, M3p=My=(K—=1)Mgz;, M3p=(K—1)mz,
_ _ 2, 2 2
Re= (14 T)ysya= Br:(RT+S)+26°RSC Mya= M3zt Mag—Myg, My = Mg (B3)

1. Symmetric fixed-point dynamics We omit the exact form of the remaining free parameters of

For a linear theory of the dynamics around their fixedthe matrix as they are extremely tedious but easily derivable
point, we need to expand the differential equati¢®®) ina  from (B2). The eigenvalues of such a Jacobian matrix are
Taylor series to first order given by

dp !

A{=My1— My, ANo=M3z3— Mys,
da_m'0+z mi;p; 1 11 21 2 33 43

(B4)

wherep;=P;— P andP; are generic order parameters. For

— 2
a fixed pomt the zeroth-order terms vanish and the eigenval- Naa= [A°+ Bo= V(Ag—Bo)*+4Kmg,Co),
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W|th AOI m11+ (K - 1)m21, BOI m33+ m34, and Coz m13
+my,. The correspondingunnormalizedl eigenvectorsy,
are given by

vi=((K-1) -1 0 0,

Vo=(1 1 vy v24), (B53)

V34=(Vza:12 V@aaaz 101,

with

M34(M33— Myz— Ag) + Kmymgy

U23= — ,
M13M34— MygMy3

My3(Ap+ Myz— M3z) —KmMygmg,;

UV24= — ,
M13M34— My4My3

(B5b)

N34~ Bg
Kmsy

U(3,9;12~

where the first digit indicates the eigenvalue number and thg* —C*=

second indicates the component index.

a. Truncated equations

For the truncated differential equations, whereare ne-

glected, the onset of specialization is characterized by the

eigenvalues
)\0_3 nBT? (863
L KA+ T)—TIK(1+T)+ BT’
A9=0 (B6b)
2
o 2 [K@A+T)-T]¥?
TRk AT (569
o 4 [KAFD-T
MR IR AT eed

i.e., one finds only one relevant eigenvakife(and one mar-
ginal eigenvalue\g). If one takes a closer look at the eigen-
vectors, whose nonconstant terms take the form

o 2K¥(1+T)
TR o
2K372

Y KCDTK(A DT
(B7b)
9 2K (B70)

Ug. T —————————
AR KA T
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o 2K3(1+T)

EORT T T(1428) KT T
(®70

one can see that the positive eigenva)l@eacts solely in the
student-teacher overlap space. This eigenvalue is associated
with a pure rotation of the weight vectors towards the teacher
unit they will specialize on. The marginal eigenvalwé
(which will be important in the case wheng terms are not
neglected shows an increase in the squared ndpnof the
student weight vectors 0O(K), but a decrease in their cor-
relations C of O(1), which corresponds primarily to a
growth of the student weight vectors outside the subspace
spanned by the teacher weight vectors.

b. Small- fixed point

To calculate the first-order correction i to the fixed
point of the truncated equatioridl), we expand the full
differential equation$B2) to first order around Eq$11) and
find the zeros of the resulting set of linear equations in
(r,s,q,c). Examining the relationgB3) more closely, one
can see that the solution is characterized bys andq=c,
and we find for the new symmetric fixed point
Qg + Q7 andR* =S* =R + R}, ignoring terms
of O(7%),

. L1[KQ+T)+28T] g
Qr=7 [K(1+T)—T] 97K

(B8a)

L1 T(1+2p)

RE=— —— 2
2w K@+ -T

i
K3/2’

GF (B8b)

with

VK(1+T)+ BT

VK(1+T)+(28-1)T'

(B8c)

T{K[K(1+T)—T]+(K—1)2,8T})

f:arcs"( [K(1+T)—TI[K(1+T)+28T]

-
K(1+T)K+28T

28T?
[K(1+T)—TI[K(1+T)+28T]

- Karcsir(

o )

For the expansion to be valid; has to be chosen to ensure
Qi<Q; and Ri<Rj. For large K, this implies
n=<0(K™1). We further note that the new fixed point is no
longer confined to the subspace spanned by the teacher
weight vectors afR* </Q* T/K. However, the symmetries
Q=C and R=S are not broken to first order. This is in
contrast to the numerical results from integrating the full
dynamics(A4), where we observe that the symmetric phase
for finite learning rates is characterized y>C (and
R=9).

—(K-1)

(B8d)
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¢. Small- dynamics tions (B3) hold. Ignoring terms ofO(%°%), we find that the

To study the onset of specialization, we expand the d|fe|genvalues(e|genvector)s of the Jacobian have acquired
ferential equation§B2) around the new fixed point, which is O(%?) [ O(#)] corrections to their values in E¢B6) [Eq.
again characterized bl =C andR=S, and the matrix rela- (B7)]. In particular

28T2 [ JK

14 VKAAT)-T o] KA+D+@Eg-1T
JKIK(1+T)+ 28T VKA+T)+(28+1)T

27 KA+ +2B- 1T 7T | K KAL)+ (28-1)T

B 1 B (K=1)y1+T (B9
VK2(1+T)(1+2T)+K(1+2T)T(28—1)—4BT? JKA(1+T)>+K(1+T)T(28—1)— 48T}’
|
which is, in general, positive and dominated by theerm, 1 7 T(1+28)
, the marginal eigenvalue now becomes relevant to the,,=— K1 aran (B11b
dynam|cs As mentioned in Appendix B 1, the associated 7 ™ [1+(1+8)T]
eigenvectoriwhose » dependence can be ignored as it con-
stitutes only a minor correctiorshows an increase iQ of 2 7 (KZ1)(1+25T) (B110
O(K) and a decrease i@ of O(1). As theincreases irR Boa K 1 T(1+8T)%?
andS are equal, this mode does not contribute to the special-
ization process but corresponds primarily to a growth of the 2y (K—1)8T
student weight vectors outside the subspace spanned by tog,= — — — 7 (B11d
teacher weight vectors. Since the initial differences between ™K J1+T(1+8T)
Q and C are typically large, this eigenvalue will actually
dominate the dynamics and quickly drive the student away 4 7 1+T 27 1
from this particular fixed point. We therefore conclude that021:; Kliiei1e 32 7K \/:
the fixed point associated witQ=C is relevant only for [1+(1+A)T] ra(1+pT
7=0 and that a fixed point characterized Qy>C leads to (K—1)
the long symmetric phase foy>0, which is not accessible , (B11e
by first-order correction to the fixed point studied in Appen- V(1+28T)(1+2T)
dix B 1 b. An analytic study of that fixed point necessitates
an expansion to second order and the subsequent solution of 4 n (K- l)f 1 2 7 2
a set of quadratic equations, which we have found to b&23= ~ ~ g \/1Tl 1+,3T)3/2 T K| 1+(1+28)T
infeasible.
K-2
e : : : ( ) , (B11f)
. Convergence fixed-point dynamics \/(1+ 2BT)(1+7)
As for the symmetric fixed point, we expand the differen-
tial equationgB2) to first order around the zero generaliza- 2 77 1
tion error fixed pointQ*=R*=T and C*=S*=0, where = Ca1= LA D) (B1lg
we use the orderin®,=R, P,=Q, P;=S, andP,=C for B
the convergence phagagain following the convention of
earlier work[2]). Similarly, we also expand the generaliza- Care — i 7 T (B11h
tion error (B1) to second order. Explicitly, one finds for the 32 T K ~/1+,8T(1+T)3’2’
generalization error
9 T m 4 (1+2T)3/2 (1+ 2T)3/2 ( B) ( ﬂ )( ) (Blll)
- q(s—c¢) Caa=0 (B11j
- = )
~ 15T (2 c)+ T ] (B10) 34
4 5 1 1 27 2
The elements of the Jacobian matrix are given by Cq1=— K \/= = Xl s =
1+8T(V1+T 7K J1+(2+8)T

2 7 1+(1+28)T

Cui=— — ¢

T K1+ (1+8) T2 (B113

(K=2)
+
J(1+BT)(1+2T)

] , (B11K)
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4 7;[ 1 . (K—2) U(1,2;2= C21D1(N 1,27 C44) + C43C24(N 1 2~ C11)
Caz=_ ¢
7K VI+(1+8)T J(A1+BT)(1+T) +D1(C31C23+ C41C24) + C43C21C14, (Bl4g
_27 2 n (K=2) U(1,2;3= 2C31C14(A2— N 1,2) +2C3C04(C11— A1 )
KI1+(1+8)T (1+BT)(1+T
i (L+AT  (A+AT ) —C14€21C2— 2C24C1C31, (B14f)
V(A+B8T)(1+T)
x| 4 +(K=3) | |{. B11l 1
( V1+(1+8)T ( ) ( ) U(1,2);4:C_1()\1,2_ A1){2(C21C30— C12C41) (N 1 2~ Cy4)
The remaining elements can be deduced by the matrix rela- +Cy[Co1(N1 2= Cyg) +Caz(N1 o~ A2)
tions[18]
+c41D1+C23Cs]}. (B14g
1
€11~ 5C21=Coo~ 2C15, (B12g  Comparing the eigenvecto(B14) with the expansion of the
generalization erro(B10), one finds that the modes 4 are
1 orthogonal to the first-order terms in the generalization error
Cas— = Ca3= Cas— 2Cas, (B12p  and therefore cannot contribute to their decay. These modes
2 are therefore only relevant for second-order terms in the gen-
! eralization error with a decay rate oh2,. As discussed in
PN Sec. IV B, the fastest convergence is given by @&). This
C15™ 5 C23= Caa™ 2C1a, (B129 5 achieved either forp®, where 2;=\,, or for »°™,
which is defined by the minimum of;. The critical (maxi-
1 mal) learning rates are defined by the zeros of the determi-
Ca1™ 5Ca1=Caz™ 2C3). (B12d

The eigenvalues of such a Jacobian matrix are given by the

solutions to two quadratic equations

1
Nz=5[A1+B1* (A~ By)?+4CiD,], (B139

1
)\3,4:§[A2+Bzi\/(A2—32)2+4C2D2]. (B13b
with

Aj=Cqi— 5021, B1=Cas—2Cq4, C12031_§C41,
D1=C24=2C1s, A=C11%2C15, By=Cayt 5Cas,

C,=C31+2C3, Dy=cCyt 5 Cos-

The correspondingunnormalized eigenvectory; are given
by

Vio=(V12:1 V22 V2:3 UV2:4), (Bl4d
Vas=(1 2 viaem  2034,34) (B14b
with (usingcs,=0)
N3 a— Ay
U(3,4);(3/4):—D2 , (B149

U(12:1= —12D1[€14C1+C1(Bo— N1 9 +C3D5]

+C43C14(A1— N1 D)}, (B14d

nant in »

A1B;=C;Dy, (B153

A282:C2D2, (Bl5b)
where only one nonzero learning rate solution exists in Eq.
(B15b), coinciding with\;=0.

Unfortunately, it is in general infeasible to optimize the
eigenvalues with respect to the learning parameteasd 8
analytically for arbitraryK and T. However, one can make
some progress in certain limits & and T, which we will
investigate below.

a. Large-K limit

The dominant terms for a large number of hidden units for
all relevant quantities can be extracted by an asymptotic se-
ries expansion under the self-consistent angatzO(1) and
B= O(1). For the tworelevant eigenvalues one makes the
ansatz\;= O(K 1) and finds to leading order

M(B)=—%%%, (B163
7\3([3)=—32(8§3—€;3), (B16b)

T K

with the auxiliary variables
X1=EE(E1— &), (B160

X2=E16— EV1+2BT(1+T)+ 1+ 2T(1+BT)— &2,

(B16d)
E=V(1+T)(1+8T), (B166
E=\(1+2T)(1+28T), (B16f)
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E=V1+(1+pB)T. (B169) 7P B) = mET{E(L+ )+ EEL 1+ B(1+T)]}
These define two critical learning rates X{E3E(1+B)T—EV1+2T(1+BT)E]
" +VIH2BT(L+TE-E-&]F S (B20)
ToB) =7, (B173 _ o
X2 The optimal convergence rate, which is just given ag at
0 7°" however, cannot be further optimized analytically with
Neill B) = TEL> N (B17b  respect tog and this optimization has to be done numeri-
cally. The results fog°Pt and all other interesting quantities
where \, is identical to zero §2;) and diverges 7). in this limit can be seen in Figs. 7 and 8.
respectively. Solving Eq(B15b), one finds 7= ngm, as To make further progress in thé— oo limit, one can look

expected. It is important to realize that E§164 is only a  at the limitsT—o~ and T—0. These results turn out to be
valid expansion foi ; for 7< 75, beyond which the ansatz equivalent, to leading order ik andT, to results where both
A= O(K™1) breaks down as;= O(1). In fact, the order T andK go to their limits simultaneously, i.e., taking the
of the two eigenvalues, and \, changes aty, and Eq. limit K—o with T=T.K and T=T,/K, respectively.To
(B163 is the correct asymptotic expansion of, for andT,, are prefactors controlling the significance betwé&en
7> ney . This change in the order of eigenvalues can be see_ﬁ”dK- Belo_w, we there_fore used the more general expansion
quite well in Fig. Ga), as the natural continuation fay, for I both variables for higher-order terms. Unfortunately, this
large 7 follows the curve representing, and vice versa. As Was infeasible for higher-order terms for optimized ABP in

mentioned above, one has to calculate, in general, pfth the smallT limit, where we present the results obtained by

opt Vi _ _ ively. taking the largek limit first.
and 7’ by solving 3=y andd\, /dn=0, respectively. - = Fs TS 1T 1K) | For GD the leading terms of

pue 0 t he Erte ak‘;{OW” of the' ansatz fof aboveg, solu- the relevant quantities in this limit are
tions with P> 7 are spurious.

For GD the eigenvalues and the critical learning rates 1 172
simplify to Dena= T 1+ T— ET2+§?(TK—4) , (B21a
4 7
N(D)=——-[(1+T)—y1+2T 1 2T
(D) ==— [ )= ] o 1+§(2_\/§)T_§R}, (B21b)
y mV1+2T—1n (B18a ) \/_ \/_
(1+2T)[m(1+T) = 7]’ P LN P o122, V2T
A 2,1 (2+2)T+ yamma vl
(B219

2
Na(1)=— = [(1+2T)"¥2~(1+T)"3],
™K with TK=Ty= O(1). Theoptimization for ABP vyields, for

(B18b) K—o precedingT—0,
noi(1) =71+ 2T, (B189 on_ 2 3 596(\5-1)
) =7+ ET (B223
Neif(1)=m(1+T), (B18d
3/4 _
resulting in the two candidates for the optimal learning rate _ S \/5(\/5 1)
. max '77'\/§ 1+ ﬁ ,
taking the form I 20
(B22b)
Nt T[2(1+T)3— (24 T)(1+2T)%? i
71 = ——— —, 151953315
(1+T*(V1+2T-2)+(1+2T) pP=m3 1-—————T|,
(B19a | 3003-5)
(B22¢
op _ o _ 1/2
70 1) = miy— w1+ T[(1+T)— V1+2T]Y2
" (B19b) o 4T 5%6(3-5)
L R LA A
S K 5(5-1)
To decide on the correct learning rate for giverone has to (B22d)

evaluate whethem(1)< 75(1) and then calculate the

convergence rates for the two learning rates. We find thatn this limit ABP vyields in leading order a factor of /31

7°P(1)=7P(1) for T>T" and 7°P(1)=%%(1) for in reduction of training time due to the increase Bt

T<T whereT=1.2780 is defined by;°*(1)=5%P(1). =T~ *. Furthermore, the decrease in the normalized gap be-
When optimizingB, one always finds that the fastest con- tween ., and »°®' is slowed down proportional to qr.

vergence is achieved forA3=\; and the optimal learning (i) Large-T limit(T=T.K). For GD the leading terms of

rate is determined by the relevant quantities in this limit are
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VT (1+2T.)2
Nmax™— 77\/5\/?{ 1- K + a7 | (B23a
™2
opt— -—, B23b
7 T max Zﬁ ( )
2 _
AOPL=— | 1— \/_f_;_M
KT K T '
(B23¢
whereas the optimization for ABP gives
1 1 3y2T,.+8y6—12—-23
BoP'=——— V2 V6 3 (B243

Y ,

Nmax— 77\/?— 116[11\/ET°°+ 20+ 14\/5— 8\/5(2-}_ \/§)],
(B24b)
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2
BOpIZ?, (B26a
5K
=7\, B26b
TTmax \/—S(K—l)+3\/§ ( )
77°pt: Mmax; (B260
4 5T
NOPl= — — (B260d

35K-1)+3\5

which explains the very weak influence kfon the previous
results(besides the natural rescaling 0t with K1),

c. Large-T limit

Unlike for small T, we find significant changes in the
learning behavior of both algorithms in the largdimit. For
GD one finds for the leading orders

= 2K 1- ——|, B27
. M max 77\/— ﬁ 1 ( a)
Pleyy  — =, B249
7 Mmax 4 ﬁ ( ) \/EK
opt m
7= Mmax— Ta (827b)

o 33 Tem(2V2)(V3-V2)

KT \/Eﬁ . NOPl= — i — E (B2790

(B24d) T T3 NG

In this limit ABP vyields only a constant factor of For ABP th ical soluti h if .
3./3/4~1.2990 in reduction of training time and an increase. - the Nhgerica’ so utions suggest the seff-consistent
: ansatzB°P« T~ 13 and the leading terms are

in the learning rate gap by a factor 3/2. This should be con-
trasted to the increase in training time for both algorithms by

1/3 _ 1/3
a factorT and a decrease in the normalized learning rate gap _ oK+ 19[ 18K-1)

oot L[ 12AK—1)?
B pt—g[

of T-1. Two logical further extensions are to look at the T 54 | T2 ’
limits T—0 andT— o for K finite, especially as the numeri- (B28a
cal solutions indicatgsee Fig. Tb)] that there are qualitative
changes in the learning behavior at least Tor «. 3V2(K—1)2|*?
77max:7TK \/E_ f
b. Small-T limit
For small T, where the network becomes nearly linear, 3K + 1[36\/§(K—1) 13
one should only expect minor changes to the limits studied ~ 18 { > , (B28b
previously since the network behaves smoothly. In particu- T
lar, we find for GD
K+4 7%= Dmax— WT\/EK! (B289
Dma= T 1+ T— WTZ}, (B253
K—1 )\ OPL— 1 4\2-6 —3\/5(}(_1)2 ”
7P 7| 1+ 1—\/W)T(1+T)}, REC T
(B250) 37K + 11 36y2(K — 1) | *°
- =) + 7 { T2 . (B28d)
>\°pt=—2?[1—2 1+ % T|.
(B250) In this limit ABP vyields a larger constant factor of

2./2~2.828 in reduction of training time and an increase in
For ABP only the leading term is feasible to calculate, re-the learning rate gap by a factor 2, which is somewhat better
sulting in than for the infiniteK case.
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