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On-line learning with adaptive back-propagation in two-layer networks
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An adaptive back-propagation algorithm parametrized by an inverse temperatureb is studied and compared
with gradient descent~standard back-propagation! for on-line learning in two-layer neural networks with an
arbitrary number of hidden units. Within a statistical mechanics framework, we analyze these learning algo-
rithms in both the symmetric and the convergence phase for finite learning rates in the case of uncorrelated
teachers of similar but arbitrary lengthT. These analyses show that adaptive back-propagation results generally
in faster training by breaking the symmetry between hidden units more efficiently and by providing faster
convergence to optimal generalization than gradient descent.@S1063-651X~97!08109-9#

PACS number~s!: 87.10.1e, 05.20.2y, 02.50.2r, 02.30.Hq
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I. INTRODUCTION

Multilayer feedforward perceptrons are widely used
classification and regression applications mainly due to t
ability to learn a wide range of maps@1# from examples.
When learning a mapf 0 from N-dimensional inputsj to
scalarsz the parameters$W% of the studentnetwork are
modified according to some training algorithm so that
map defined by these parametersf W approximates the
teacher f0 as close as possible. The resulting performa
can be measured by thegeneralization erroreg , the average
of an error measuree over input spaceeg5^e&j . The error
measure or loss function is often defined as the squared
tance between the output of the network and the desired
put, i.e.,

e5
1

2
@ f W~j!2 f 0~j!#2. ~1!

One usually distinguishes between two learning paradig
batch learning, where training algorithms are general
based on minimizing the error on the whole set of giv
examples, andon-line learning, where single examples ar
presented serially and the training algorithm adjusts the
rameters after the presentation of each example. The
ciency of these training algorithms is measured by th
speed of convergence to an ‘‘acceptable’’ generalization
ror ~in terms of training time or the number of example pr
sentations!.

This research has been primarily motivated by rec
work @2# investigating an on-line learning scenario of a ge
eral two-layer student network trained by gradient desc
~which is usually referred to in the neural network literatu
asback-propagation! on a task defined by a teacher netwo
of similar architecture. It has been found that in the ea
stages of training the student is drawn into a suboptim
symmetric phase, characterized by undifferentiated imitat
by student vectors, of parameter vectors related to the v
ous teacher hidden nodes. Although student node symm
is eventually broken and student performance converge
the minimal achievable generalization error, a signific
part of the training time may be spent with the syste
561063-651X/97/56~3!/3426~20!/$10.00
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trapped in the symmetric subspace. Speeding up the es
from the symmetric phase is likely to improve the trainin
efficiency significantly; in this paper we suggest a simp
modification of the basic back-propagation and analyze
resulting expected improvement in training efficiency.

The need for improved neural network training methods
clear as training efficiency is in the heart of the method its
and plays a significant role in determining the usefulness
the method as a whole; new tools may enable us to ob
better performance in shorter training times as well as
expand the envelope of feasible tasks. For batch train
there is a variety of efficient training methods available, su
as second-order methods~e.g., Newton-Raphson or conju
gate gradient!. However, as these methods are based on
entire training set they are not applicable to on-line learni
Several different methods have been employed for impr
ing on-line training in both discrete and smooth networ
most of which are based on heuristics or on analysis in
asymptotic regime.

Among the most common modifications to the conve
tional back-propagation algorithm, for smooth systems,
training with momentum. An analysis using stochastic a
proximation theory@3# shows that for learning large examp
sets it merely rescales the learning rate in the converge
phase. Similar trivial effects are also mirrored in the statis
cal mechanics framework@4#, unless different scaling is use
for the learning rate term. Its usefulness is so far inconc
sive. Other methods aimed at incorporating informati
about the curvature of the error surface into the learning r
have been proposed recently@3,5#. These rules are expecte
to be efficient asymptotically, although their effect on earl
stages of the learning process and especially on the leng
the symmetric phase is not yet clear.

Several efficient methods have been suggested for on
learning in discrete networks. Some of the methods are ba
on a greedy maximization of the local difference in genera
zation error@6#, while others are based on structured learn
rules@7,8#. It is, however, unclear whether these methods c
be extended to accommodate smooth multilayer netwo
such as the soft-committee machine@9,2# and whether these
extensions would be useful in devising an efficient meth
3426 © 1997 The American Physical Society
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56 3427ON-LINE LEARNING WITH ADAPTIVE BACK - . . .
for escaping the symmetric phase, especially since appl
local optimization in this phase is likely to fail~as demon-
strated in@10#!.

A method for breaking the symmetry of the student n
work in smooth machines by enforcing a weight-orderi
penalty term on the space of hidden units has been sugge
in @11#, showing a considerable improvement in training tim
for a very simple network architecture. A more detailed n
merical investigation, however, shows that this method f
completely in the case of isotropic teacher networks, w
uncorrelated teacher weight vectors of similar length, wh
the student remains indefinitely trapped in a suboptimal s
metric phase@12#. In the case of a soft-committee machin
where biases are applied to the hidden layer nodes, as i
case in realistic networks, there is further evidence that
strongest symmetry-breaking effect is provided by the n
work biases@13#, possibly leading to a stagnating compe
tion in breaking the symmetry between biases and
weight-ordering penalty term.

The aim of this paper is twofold. It gives some insig
into the reasons for the short-comings of back-propaga
and it furthermore investigates possible improvements by
troducing an adaptive back-propagation algorithm@14#. This
algorithm features, besides the learning rateh, a second
adaptable parameter, the inverse temperatureb, which im-
proves the ability of the student to distinguish between h
den nodes of the teacher forb.1. We compare its efficiency
with that of gradient descent in training two-layer networ
following the framework of@2# and present numerical stud
ies and rigorous analyzes of both the breaking of the s
metric phase and the asymptotic convergence. We note
although these analyzes provide us with optimal values
the user adjustable parametersh andb for different stages of
the training process in a range of learning scenarios, it
mains an open question how these parameters can be
mized adaptively on-line withouta priori knowledge of the
training task@15#. Within this limitation, we find that the
optimized adaptive back-propagation can significantly
duce training time in both regimes by efficiently breaking t
symmetry between hidden units and by providing faster
ponential convergence asymptotically.

II. DERIVATION OF THE DYNAMICAL EQUATIONS

The student network we consider is a normalized s
committee machine, consisting ofK hidden units, which are
connected toN-dimensional inputsj by their weight vectors
W5$Wi% ( i 51, . . . ,K). All hidden units are connected t
the linear output unit with arbitrary but fixed gaing by cou-
plings of fixed strength. The activation of any unit is norm
ized ~by the inverse square root of the number of weig
connections into the unit! allowing all weights to be ofO(1)
magnitude, independent of the input dimension or the nu
ber of hidden units. Note that this is in contrast to most ot
on-line learning literature~e.g.,@9#!; however, as we will see
later, this leads to a more intuitive and elegant result for
optimal learning rates. The implemented mapping is the
fore

f W~j!5
g

AK
(
i 51

K

gS 1

AN
Wi•jD 5

g

AK
(
i 51

K

g~xi !, ~2!
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where xi5Wi•j/AN is the student activation andg() is a
sigmoidal transfer function. The mapf 0 to be learned is de-
fined by a teacher network of the same architect
except for a possible difference in the number of hidd
units M and is defined by the weight vectorsB
5$Bn% (n51, . . . ,M ). Training examples are of the form
(jm,zm), where the components of the input vectorsjm are
drawn independently from a zero mean Gaussian distribu
with arbitrary variances2. The targets therefore are

zm5
g

AM
(
n51

M

gS 1

AN
Bn•jmD 5

g

AM
(
n51

M

g~yn
m!, ~3!

where yn
m5Bn•jm/AN is the activation of teacher hidde

unit n. Note that we will use indicesi , j ,k,l to refer to units
in the student network andn,m for units in the teacher net
work.

An on-line training algorithmA is defined by the update
of each weight in response to the presentation of an exam
(jm,zm), which can take the general form

Wi
m115Wi

m1Ai~$g%,Wm,jm,zm!, ~4!

where$g% defines parameters adjustable by the user. In
case of standard back-propagation, i.e., gradient descen
the error function defined in Eq.~1!,

Ai
GD~h,Wm,jm,zm!5hd i

mjm, ~5!

with

d i
m5dmg8~xi

m!

5@zm2 f W~jm!#g8~xi
m!, ~6!

where the only user adjustable parameter is the learning
h. One can readily see that each of the three terms in
back-propagation weight update plays a different role. T
differencedm between the student output and the target
gether with the learning rate determines the overall size
the update of all weight parameters by specifying h
closely student and teacher are matched. The input vectojm

discriminates between the weights leading to different
puts. However, onlyg8(xi

m), i.e., the derivative of the trans
fer functiong(), breaks the symmetry between different hi
den units. The fact that a prolonged symmetric phase
exist indicates that this term is not significantly different ov
the hidden units for a typical input in the symmetric phas

The rationale of the adaptive back-propagation algorit
defined below is therefore to alter theg8 term in order to
magnify small differences in activation between hidd
units. A simple way of enhancing these differences is
altering g8(xi) to g8(bxi), where b plays the role of an
inverse ‘‘temperature.’’ Varyingb changes the range of hid
den unit activations relevant for training, e.g., forb.1
learning is more confined to small activations, when co
pared to gradient descent (b51), i.e., the training process i
effectively ‘‘frozen’’ for larger activations. One could als
absorb this modification into gradient descent with a s
and activation-dependent learning rate, making it more ob
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3428 56ANSGAR H. L. WEST AND DAVID SAAD
ous that adaptive back propagation deforms the search s
spatially. The adaptive back-propagation learning rule
therefore

Ai
ABP~h,b,Wm,jm,zm!5hdmg8~bxi

m!jm

5hd i
m̃jm, ~7!

with dm as in Eq. ~6!. To compare the adaptive back
propagation~ABP! algorithm with conventional gradient de
scent~GD!, we follow Ref. @2#. As we are interested in th
typical behavior of our training algorithm we average ov
all possible instances of the examplesj. This average is mos
conveniently performed implicitly by averaging over th
Gaussian distribution of the activationsx5(x1 , . . . ,xK) and
y5(y1 , . . . ,yM). The Gaussian distribution has zero me
as^xi&j5^yn&j50 and a covariance matrixC whose compo-
nents are given by the order parameters describing the o
laps between student and teacher nodes:

^xixj&j5
s2

N
Wi•Wj[Qi j , ~8a!

^xiyn&j5
s2

N
Wi•Bn[Rin , ~8b!

^ynym&j5
s2

N
Bn•Bm[Tnm . ~8c!

The generalization erroreg , measuring the typical perfor
mance, can be expressed in these variables only. We can
rewrite the update equations~7! in Wi as equations in thes
order parameters and theQi j and Rin become the new dy
namical variables, which are self-averaging with respec
the randomness in the training data in the thermodyna
limit ( N→`), whereas theTnm are fixed and given by the
ce
s

r

er-

lso

o
ic

task. We note that the variance of the input distributi
merely rescales the length of the order parameters and
learning rate bys2 and can therefore be set to one witho
loss of generality.

If we interpret the normalized example numbera5m/N
as a continuous time variable, the update equations for
order parameters become first-order coupled differen
equations

dRin

da
5h^d i

m̃yn&$x,y% , ~9a!

dQi j

da
5h^d i

m̃xj1d i
m̃xi&$x,y%1h2^d i

m̃d i
m̃&$x,y% . ~9b!

All the integrals in Eqs.~9! and the generalization error ca
be calculated explicitly if we choose the error functio
gn(x)5 erf(nx/A2) as the sigmoidal activation functio
with arbitrary gainn. For the exact form of the dynamica
equations and the generalization error, we refer the reade
Appendix A. We only mention in passing that the sigmoid
gain n merely rescales all order parameters and the learn
rate byn2, whereas the output gaing rescales just the learn
ing rate byg2. In the following both are therefore set to on
without loss of generality.

III. NUMERICAL INTEGRATION
OF THE DYNAMICAL EQUATIONS

The differential equations can easily be integrated
merically for any number ofK student andM teacher hidden
units. For the remainder of the paper, we will, however,
cus on the realizable case (K5M ) and uncorrelated isotropic
teachers of arbitrary lengthTnm5Tdnm .

The dynamical evolution of the overlapsQi j andRin fol-
lows from integrating the equations of motion~9! from initial
ode

FIG. 1. Dynamical evolution of@~a! and~c!# the student-student overlapsQi j , @~b! and~d!# the student-teacher overlapsRin , and~e! the

generalization error as a function of the normalized example numbera for a student with three hidden nodes learning an isotropic three-n
teacher (Tnm5dnm). The learning rateh50.03 is fixed, but the value of the inverse temperature varies:@~a! and~b!# b512 and@~c! and~d!#
b51 ~gradient descent!.
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56 3429ON-LINE LEARNING WITH ADAPTIVE BACK - . . .
conditions determined by the~random! initialization of the
student weightsWi . For random initialization the resulting
norms Qii of the student vector will beO(1), while the
overlapsQi j between different student vectors, and stude
teacher vectorsRin will be only O(1/AN). A random initial-
ization of the weights and biases can therefore be simul
by initializing the normsQii , and the normalized overlap
Q̂i j 5Qi j /AQii Qj j andR̂in5Rin /AQii Tnn from uniform dis-
tributions in the@0,1# and@210212,10212# intervals, respec-
tively.

In Fig. 1 we show a typical difference in the evolution
the overlaps and the generalization error forb512 andb51
~gradient descent! for K53 andh50.03. In both cases, th
student is drawn quickly into a suboptimal symmetric pha
characterized by a finite generalization error@Fig. 1~e!# and
no differentiation between the hidden units of the stude
The student normsQii and overlapsQi j are similar@Figs.
1~a! and 1~c!#, i.e., the students are highly correlated w
each other. The overlaps of each student node with
teacher nodesRin are nearly identical@Figs. 1~b! and 1~d!#,
i.e., each student unit imitates all teacher units with sim
success. The student trained by GD@Figs. 1~c!,1~d!# is
trapped in this unstable suboptimal solution for most of
training time, whereas ABP@Figs. 1~a! and 1~b!# breaks the
symmetry significantly earlier. The convergence phase
characterized by a specialization of each student nodes
particular teacher node, which corresponds to an evolutio
the overlap matricesQ and R to their optimal valueT, ex-
cept for the permutational symmetry due to the arbitrary
beling of the student nodes.

Examining the decay of the generalization error in F
1~e! more closely, one can see that the choiceb512 is sub-
optimal in this regime. The student trained withb51 con-
verges faster to zero generalization error. In order to o
mize both the learning temperatureb and the learning rateh
simultaneously for both phases of the learning process,
symmetric and the convergence phase, we will examine
equations of motions analytically in the following section

IV. ANALYSIS OF THE DYNAMICAL EQUATIONS

In the case of a realizable learning scenario (K5M ) and
isotropic teachers (Tnm5Tdnm) the order parameter spac
can be very well characterized by similar diagonal and o
diagonal elements of the overlap matricesQ andR, justify-
ing the ansatz

Qi j 5Qd i j 1C~12d i j !, ~10a!

Rin5Rd in1S~12d in! ~10b!

for the student-student overlaps and~apart from a relabeling
of the student nodes! student-teacher overlaps, respective
As one can see from Fig. 1, this approximation is particula
good in the symmetric phase and during the final conv
gence to perfect generalization.

The reduction of the number of order parameters fr
O(K2) to just four simplifies the differential equations an
the generalization error significantly~see Appendix B!. This
allows us to analyze the learning dynamics exactly as a fu
tion of the size of the networkK, the length of the teache
t-
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hidden unitsT, and the user adjustable training paramete
the learning rateh and the learning temperatureb.

A. Symmetric phase and onset of specialization

Numerical integration of the equations of motion for
range of learning scenarios shows that the length of the s
metric phase depends on the number of hidden unitsK, the
anisotropy in the length of the teacher vectors, the choice
the user adjustable parametersh and b, and the anisotropy
of the initial conditions. If we assume that the initial cond
tions are random andK is fixed, the trapping in the symmet
ric phase is especially prolonged by isotropic teachers
small learning ratesh.

Initially, we will therefore study the dynamics~9! analyti-
cally in the symmetric phase for isotropic teachers in
small-h regime, where terms proportional toh2 can be ne-
glected. Later, the effect of a finite learning rate, i.e., inclu
ing h2 terms, will be studied analytically for smallh and
numerically for arbitraryh.

1. Truncated equations

The truncated equations of motion have only one phys
fixed point, given by

Q0* 5C0* 5
T

K~11T!2T
, ~11a!

R0* 5S0* 5AQ* T

K
5

T

AK@K~11T!2T#
, ~11b!

which is independent ofb and therefore identical to the on
obtained in@2# for T51. The fixed point can be understoo
in geometrical terms: the student weight vectors are confi
to the subspace spanned by the teacher weight vectors
their projection onto each teacher weight vector is identic
However, this symmetric solution is an unstable fixed po
of the dynamics and the small perturbations introduced
the generically nonsymmetric initial conditions will event
ally drive the student towards specialization.

To study the onset of specialization, we expand the tr
cated differential equations to first order in the deviatio
q5Q2Q0* , c5C2C0* , r 5R2R0* , and s5S2S0* from
the fixed-point values~11!. The linearized equations of mo
tion take the formdv/da5MTv, wherev5(r ,s,q,c) andM
is a 434 matrix whose elements are the first derivatives
the truncated update equations~B2! at the fixed point with
respect tov. For the onset of specialization only the mod
with positive eigenvalue are relevant, being amplified by
dynamics. For them we can identify the inverse eigenva
as a typical escape timet i from the symmetric phase.

For the truncated equations of motion, we find only o
relevant perturbation@see Appendix B 1 a, Eqs.~B6! and
~B7!# with an associated eigenvector implyingq5c50 and
s52r /(K21), i.e., a pure rotation of the student weig
vectors inside the subspace spanned by the teacher w
vectors towards the teacher unit they will specialize on. T
can also be confirmed by a closer look at Fig. 1. The onse
specialization is signaled by the breaking of the symme
between the student-teacher overlaps, whereas signifi
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3430 56ANSGAR H. L. WEST AND DAVID SAAD
differences from the symmetric fixed-point values of the s
dent norms and overlaps occur later. The escape eigenv
is

l0~b!5
2

p

hbT2

AK~11T!2T@K~11T!1bT#3/2
. ~12!

Maximization ofl0
opt(b) with respect tob yields

bopt52
K~11T!

T
, ~13!

i.e., the optimalb scales with the number of hidden units a
also grows proportionally to 1/T for small teacher lengths
The optimized escape eigenvalue is

l0
opt~bopt!5

4A3

9p

hT

AK~11T!AK~11T!2T

5l0
opt~1!

2A3

9

@K~11T!1T#3/2

TAK~11T!
. ~14!

Trapping in the symmetric phase is therefore for very sm
learning rates always inversely proportional to the learn
rate h. It is interesting to study two limiting cases:K→`,
i.e., large networks, andT→0, i.e., small teacher weights o
nearly linear functions. In these limits, one finds that t
escape eigenvalue isl}1/K2 (l}T2) for GD, in contrast to
l}1/K (l}T) for optimized ABP, respectively, i.e., in thes
limits the time spent in the symmetric phase can be redu
by an order ofK or 1/T.

2. Small-h expansion

Numerical integrations of the differential equations~A4!
for larger learning rates indicate a reduced optimal value
b, with the ansatz~10! still valid. It is therefore desirable to
analyze the symmetric phase for finite learning rates.

Analytically, we can expand the full set of equations~B2!
to first order inv5(r ,s,q,c) around the fixed point of zeroth
order ~11! and find its first-order correction inh by solving
the resulting set of linear equations. The new fixed po
found is still characterized byQ* 5C* and R* 5S* @Eq.
~B8!#. This is in contradiction to the numerical results, whi
predict a fixed point withQ* .C* and R* 5S* . This con-
tradiction can be resolved by studying the linear dynam
around the new fixed point. An eigenvalue that was marg
(l250) for the truncated equations of motions acquire
positive contribution ofO(h2) @Eq. ~B9!#. The mode asso
ciated with this eigenvalue increases differences betweeQ
and C, leading primarily to a growth of the student weig
vectors outside the subspace spanned by the teacher w
vectors~see Appendix B 1 C! and no specialization. As thes
differences are typically large for random initial conditio
~unlike differences inR and S), this mode will drive the
student quickly away from the fixed-point characterized
Q* 5C* to one with Q* .C* , where the student will be
trapped until specialization betweenR and S will occur
eventually. Unfortunately, this fixed point cannot be stud
analytically, but can, however, be studied numerically.
-
lue
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3. Numerical finite-h analysis

In Fig. 2~a! we show the order parameter values at t
fixed point, which are characterized byQ* .C* and
R* 5S* for finite-h values. WhereasR* is nearly constant
over a wide range of learning rates, the value ofQ* in-
creases andC* decreases rapidly. In fact, ash approaches a
certain value, termed herehd , the values of the order param
eters diverge.

This behavior can be understood by linearizing the d
namics around the fixed point and analyzing its eigenval
@see Fig. 2~b!#. We find two eigenvalues that are alway
negative and of large magnitude and are therefore irrelev
to the long-term behavior of the dynamics. For the other t
eigenvalues one finds thatl1.0 and l2,0 for small to
intermediate learning rates. The eigenvector associated
l1 is in fact identical to the one found for fixed points wit
Q* 5C* and corresponds to a pure rotation and instability
R-S space. The eigenvector ofl2 is also very similar to the
eigenvector of the eigenvalue that caused the instability
the Q* 5C* fixed point in theQ-C space. For increasing
learning rate, we first find a global maximum forl1 at the
optimal learning ratehopt(b). For even larger learning rates
we find different generic behaviors, depending on the val
of the parametersK, T, and b. In general, there are two
candidates for a maximal learning ratehmax identifiable in
Fig. 2~b!. The first,hd , corresponds tol2 becoming posi-
tive, causing an instability inQ-C space and diverging val
ues of the order parameters. The other candidate is give
the learning ratehs , wherel1 turns negative and the fixe
point becomes attractive. One can identify two pha
hs,hd and hd.hs ~for which hs does not actually exis
since the fixed point vanishes abovehd). However, in the
following we will not distinguish between these two phase
but simply definehmax5min(hd ,hs).

In order to estimate the potential gain by using ABP in t
finite learning rate case, we optimize the dynamics with
spect to the learning rateh under the constraintb51 ~GD!
and contrast it with results obtained by optimizing with r
spect to both the learning rateh and the inverse temperatur
b ~ABP! for a range ofK andT values. In Fig. 3 the optima
value ofb is shown as a function of bothK andT. Figure

FIG. 2. ~a! The symmetric fixed-point valuesR* , Q* , andC*
of the order parameters are shown as a function of the learning
h at K55 andT51 for b51. The values of the order paramete
diverge forh→hd ~see the text!. ~b! For the same parameters, th
relevant eigenvaluesl1 ,l2 ~see the text! of the linearized dynamics
around the~learning-rate-dependent! symmetric fixed point explain
the divergent behavior asl2(hd)→0. The maximum inl1, the
eigenvalue that drives the specialization process, defines the
mal learning rate.
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FIG. 3. ~a! The optimal inverse temperaturebopt is shown for variousT values~see the legend! as a function ofK. For sufficiently large
values ofTK, bopt grows withAK. ~b! Herebopt is shown as a function ofT for variousK values~see the legend!. For smallT we find a
power-law increase ofb with 1/T with an exponent that approaches 1 forTK small enough.
ve
e-

h

he
its

y-
e

e-
3~a! shows thatbopt increases for growing network sizeK, as
is expected from the small learning rate analysis. Howe
the size ofbopt grows significantly slower and becomes d
pendent on the value of the productTK. For TK@1 and
K→` one findsbopt}AK, which has to be contrasted wit
the previously predictedbopt}K @see Eq.~13!#, due to the
influence of finite learning rates.

Similarly, as shown in Fig. 3~b!, bopt grows for decreas-
ing teacher lengthsT but remains constant for largeT as
predicted previously. We find power laws forT→0, with
exponents dependent on the value ofTK. For TK!1, how-
ever, the exponent approaches21, which is identical to the
theoretical prediction in the small-h regime.
r,
Having identified the two interesting regimes where t

optimal inverse temperature deviates significantly from
GD value, small teacher weight vectorsT→0 and large net-
works K→`, we investigate the differences in optimal d
namics for GD and ABP further. In Fig. 4 we show th
behavior of both the optimal learning ratehopt @Figs. 4~a!–
4~c!# and the resulting optimal escape eigenvaluelopt @Figs.
4~d!–4~f!# for GD in comparison to ABP for variousK-T
scenarios.

The optimal learning ratehopt(T) of GD, depicted in Fig.
4~a!, exhibits a stronglyK-dependent limit for largeT and a
universal limit for smallT. In general,hopt(T) decreases for
increasingT and shows its most volatile behavior in the r
or

nt

for the

y

FIG. 4. ~a! The optimal learning ratehopt for GD descent as a function ofT for variousK values shows the most volatile behavior f
0.1<T<10. ~b! hopt(K) for severalT values shows a power-law decay with exponent22/3 in the large-K limit for TK@1. ~c! The quotient
of the optimal learning rates of ABP and GD as a function ofK for variousT values shows thathopt(bopt) decays even faster with expone
21 for largeK. ~d! The optimal escape eigenvalue for GD multiplied byK2 as a function ofT collapses on a universal (K- independent!
curve for smallT and decays rapidly with exponent 2. For largeT the escape eigenvalue becomes independent ofT, but acquire a further
K dependence (lK2}K22/3). ~e! The possible gain by using ABP is shown by plotting the quotient of the optimal escape eigenvalue
two training algorithms. The advantage of ABP is most impressive for smallT, where one can gain at least a factor 1/T in comparison to GD,
depending on theK value ~see the legend!. ~f! The same quotient as a function ofK for severalT values also shows a power-law gain b
using ABP but with a small exponent of 1/6.
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gion 0.1<T<10 and for largeK. These teacher values a
the most reasonable for real learning problems, i.e., in p
tice it will be generally difficult to choose a good learnin
rate especially for large networks. This picture can be c
firmed by examining the influence ofK on hopt for GD as
shown in Fig. 4~b!. For very smallT, the learning rate ex-
hibits hardly any dependence onK, whereas forTK large
enough, one finds thathopt}K22/3.

The behavior of the optimal learning rate for optimiz
ABP is quite similar to GD. The main difference from G
can be seen in Fig. 4~c!, which shows thathopt(bopt) decays
faster for ABP, withhopt(bopt)}K21 for largeTK. One also
finds that the optimal learning rate saturates for large-
small-T values toK-dependent constants. For largeT this
may be explained by the fact that the error is limited by
saturation of all units.

The optimized escape eigenvalue, which largely de
mines the training time spent in the symmetric phase
shown for GD in Fig. 4~d!, where we have multipliedlopt by
K2 for convenience. For smallT, one finds thatlopt(T) col-
lapses on universal curve for allK and we find the same
power-law behavior as predicted in the small-h analysis
(lopt}T2/K2) @see Eq.~12!#. For largeT, one also finds tha
lopt becomes increasingly weakly dependent onT as ex-
pected. However, it also shows a furtherK dependence due
to the decay of the optimal learning rate and one findslopt

}hopt/K2.
To highlight the possible gains of using ABP

lopt(bopt)/lopt(1) is plotted as a function ofT andK in Figs.
4~e! and 4~f!. In Fig. 4~e! one finds for smallT a gain@16# of
1/T for TK!1, which was predicted from the small-h analy-
sis @see Eq.~14!#. For largeK @see Fig. 4~f!# we also find a
power-law gain inK for the optimized dynamics, but onl
for TK@1 and with an exponent that is only 1/6, muc
smaller than the value of 1 predicted previously in Eq.~14!.
This can be attributed to the slower than predicted incre
in bopt and to the smaller optimal learning rate for ABP
this regime.

Of arguably further importance for training is the sen
tivity of the choice of the learning rate, especially in th
sense of how well the maximal learning rate is separa
from its optimal value. Therefore, the normalized differen
between the maximal and optimal learning rateDhmax

opt

5~hmax2hopt!/hopt is compared for ABP and GD as a fun
tion of T for two K values in Fig. 5. Whereas the optimal an
maximal learning rates are well separated for allT ~andK)
for optimized ABP, this is not the case for smallT for GD,
where one finds a power-law decay ofDhmax

opt with an expo-
nent that approaches 2/3 forTK!1 from above, making an
optimal selection of the learning rate increasingly more d
ficult.

Finally, we would like to compare the symmetric fixe
point for the optimized dynamics for finite learning rate wi
the theoretical values~11! for the truncated equations. In
stead of illustrating the behavior graphically, we have su
marized the results in Table I. We have found it most il
minating to compare the normalized differenceP̂*
5(P* 2P0* )/P0* for all relevant order parameters~note that
the identityR* 5S* is preserved for finiteh) in the various
limits. In general, one finds for both algorithms thatQ* .Q0*
c-

-

d

e

r-
is

se

-

d

-

-
-

and R* .R0* . For C* , however, one finds aT-dependent
behavior withC* ,C0* for T,Ts

crit(K) and C* .C0* for T
.Ts

crit(K), whereTs
crit}K1/3 for GD andTs

crit}K1/2 for ABP.
We furthermore find that the optimal symmetric fixed po
for ABP is always significantly closer to the zero learnin
rate fixed point than for GD.

Before we turn our attention to the optimization of th
dynamics in the convergence phase, we would like to su
marize the results obtained so far and put them in the con
of previous work. Unlike the small learning rate regim
which has been studied previously for both GD@2# and ABP
@14#, we find that the amount of training time spent in th
symmetric phase actually scales worse thanK2 for the opti-
mal choice of learning parameters~see Table II for an over-
view of the numerical values of the power laws!. This seems
to be mainly due to the need for reducing the learning rath
with increasingK. This reduction is arguably caused by th
high correlations between student nodes inside and
~mainly uncorrelated! increase of the student lengthsQ* out-
side the space spanned by the teacher vectors, leading
discrepency between student and teacher output that
creases significantly faster thanK for large enoughT. For
K→` (TK@0), one also finds that the gain, by using t

FIG. 5. The normalized difference between the maximal a
optimal learning rateDhmax

opt 5(hmax2hopt)/hopt is shown for both
adaptive back-propagationAABP and gradient descentAGD for
K55,100 as a function ofT.

TABLE I. Symmetric fixed points of the optimized dynamic
for both the gradient descentAGD and adaptive back-propagatio
AABP are compared in the limitsT→0 andK→` to the theoretical
values for h50 by calculating their normalized differenc

P̂* 5(P* 2P0* )/P0* . These differences exhibit either power-la
behavior, with algorithm-dependent exponents, or saturate at
stant limits, whose absolute value may be parameter dependen
are referred to byc(). In the limit T→` all parameters exhibit
finite limits and are therefore omitted.Ts

crit(K) is defined by
C* 5C0* .

T→0 (TK!1) K→` (TK@1)
AGD AABP AGD AABP

Q̂* c(K) T0.3363 K0.6462 K0.4862

Ĉ* 2c(K) 2T0.3363 K20.3362 K20.5061

R̂* T1.0061 T1.3361 K20.3562 K20.5061

Ts
crit K0.3162 K0.5061
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optimal ABP choice ofbopt}AK, is only a factorK1/6 and
not K as predicted previously.

We have furthermore relaxed the constraintT51 used in
these works and have found that the optimal learning par
eter values change significantly in the most relevant reg
of teacher lengths, which makes it difficult in practice
choose optimal learning parameters without prior knowled
or estimation of the teacher lengths. For smallT, which cor-
responds to nearly linear~but bounded! rules, one finds tha
the specialization process is furthermore slowed down b
factor of 1/T2 for GD learning. This is arguably due to th
fact that the symmetric fixed point is already a very go
approximation to the true function and information about
nonlinearities is scarce. In this regime the optimal choice
bopt}1/T helps the student significantly in breaking the sy
metry by reducing the region of hidden unit activation r
evant for training and favoring rotational over longitudin
changes. The gain achievable in this regime is of order 1T.

B. Convergence to optimal generalization

In order to predict the optimal learning ratehopt and in-
verse temperaturebopt for the convergence phase, we linea
ize the reduced set of equations of motion~B2! in
$R,Q,C,S% around the zero generalization error fixed po
R* 5Q* 5T andS* 5C* 50 ~see Appendix!.

TABLE II. For T→0 andK→` the optimized dynamics in the
symmetric phase show power-law behavior for both the grad
descentAGD and adaptive back-propagationAABP. The table shows
the optimal learning parametershopt andb, the optimal escape ei
genvaluelopt, and the normalized difference between maximal a
optimal learning rateDhmax

opt 5(hmax2hopt)/hopt. The errors in the
exponent are given for the last significant digit only andc() refers
to constant limits, whose value is dependent on a parameter.

T→0 (TK!1) K→` (TK@1)
AGD AABP AGD AABP

bopt 1 T21.0061 1 K0.5062

hopt p c(K) K20.6763 K21.0061

Dhmax
opt T0.6863 c(K) c(T) c(T)

lopt T2.0061K22 T1.0061K22 K22.6664 K22.5061
-
n

e

a

e
f

-

t

The matrix M of the resulting system of four couple
linear differential equations inr 5T2R, q5T2Q, s5S,
and c5C has two pairs of eigenvalues (l1,2 and l3,4) that
are solutions of quadratic equations~B13!. The dependence
of these eigenvalues on the learning rate is illustrated in F
6~a! for K53 andT51. The eigenvaluesl3,4 are linear inh,
whereasl1,2 have higher orders inh. One further can distin-
guish between two slow modes associated with eigenva
l1 and l3 and two fast modes associated with eigenvalu
l2 and l4, which are negative for all learning rates an
whose magnitude is significantly larger in the region of
terestingh. The fast modes decay quickly and their influen
on the long-time dynamics is negligible. The dependence
the two relevant eigenvaluesl1 andl3 on h andb is more
closely illustrated in Fig. 6~b! in the same learning scenari
and for twob values. As mentioned, the eigenvaluel3 is
negative and linear inh, whereas the eigenvaluel1 is a
nonlinear function ofh and negative for smallh. For large
h, l1 becomes positive and training does not converge to
optimal solution defining the maximum learning ratehmax as
l1(hmax)50. For allh,hmax the generalization error decay
exponentionally toeg* 50.

In order to identify the optimal convergence eigenval
lopt, which is the eigenvalue associated with the slowest
cay mode, we expand the generalization error to second
der inr , q, s, andc @Eq. ~B10!#. We find that the eigenvecto
~B14! associated with the linear eigenvaluel3 is orthogonal
to the first-order terms in the generalization error and the
fore cannot contribute to their decay, but controls only t
decay of second-order terms with 2l3. The learning ratehopt

that provides the fastest asymptotic decay ratelopt of the
generalization error is therefore given by the condition

lopt5Umin
h

@max~l1,2l3!#U. ~15!

This means eitherl1(h r
opt)52l3(h r

opt) or minh(l1) if
l1(hm

opt).2l3(hm
opt), wherehm

opt is the learning rate at the
minimum ofl1. Examples for both two cases can be seen
Fig. 6~b!.

For givenK, one finds that for GD (b51) the optimal
learning rate is at the minimum ofl1 for T,Tc

crit(K) and by
l152l3 otherwise, whereTc

crit(K) is a function weakly de-

nt

d

FIG. 6. ~a! The four eigenvaluesl i for gradient descent (b51) as a function of the learning rateh at K53 andT51. ~b! The two
relevant eigenvalues~see the text! l1 andl3 in the same scenario values ofb: b51 andb5bopt51.8314. For comparison we plot 2l3 and
find that the optimal learning ratehopt is given by the conditionl152l3 for bopt, but by the minimum ofl1 for b51.
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pendent onK andTc
crit(`)51.2780@see also Fig. 8~c!#. For

optimized ABP, where the decay ratelopt(b) has been maxi-
mized with respect tob, the optimal learning rate is given b
the root ofl122l3 for all values ofT.

Both these optimizations are analytically unfeasible
arbitrary K and T. However, for some special cases furth
analytical progress can be made:K→`, T→`, andT→0.
These cases are studied in detail in Appendices B 2 a–B
The resulting power laws will be referred to in the discuss
of the appropriate figures and are summarized for all relev
scenarios in Table III.

As in the symmetric phase, one expects the largest g
by using ABP in regions ofT-K space, wherebopt deviates
significantly from 1. In Fig. 7 the optimal value ofb is
shown as a function of bothK andT. Figure 7~a! shows that
bopt is only a weak function ofK and does not change it
order for K→` unlike in the symmetric phase. The on
significantK dependence is found for largeT and smallK.

This should be contrasted to the strongT dependence o
bopt depicted in Fig. 7~b!, where the theoretical results fo
K→` are included as well. For smallT one finds to leading
orderbopt52/T, independent ofK, whereas a strong depen
dence ofK on bopt is found for largeT. For finite K or
T/K@1, one finds bopt}T21/3, whereas bopt'1/3 for

TABLE III. For T→0 andT→` the optimized dynamics in the
convergence phase show power-law behavior for both gradien
scentAGD and adaptive back-propagationAABP. The table shows
the optimal learning parametershopt and b, the optimal conver-
gence eigenvaluelopt, and the normalized difference between ma
mal and optimal learning rateDhmax

opt 5(hmax2hopt)/hopt. c() refers
to constant limits, whose value is dependent on a parameter.

T→0 T→` (K finite! T→` @TK215 O(1)#
AGD AABP AGD AABP AGD AABP

bopt 1 T21 1 T21/3 1 1
3

hopt p c(K) K1 K1 T1/2 T1/2

Dhmax
opt T1 T1/2 T21 T21 T21 T21

lopt T2K21 T1K21 T23/2 T23/2 T21K21 T21K21
r
r

c.
n
nt

ns

T/K<O(1). Thequalitative difference of learning for finite
and infiniteK in the large-T limit will become clear later.

Again, we would like to assess the potential benefits
ABP over GD. Note the discrepency between our results
those previously presented@2# for GD in the convergence
phase for the special caseT51, where an approximation by
reducing the dynamics to theq-r space was employed, pro
ducing inaccurate results.

In Fig. 8 we therefore show the behavior of both the o
timal learning ratehopt @Figs. 8~a! and 8~b!# and the resulting
optimal convergence eigenvaluelopt @Figs. 8~d! and 8~e!# for
GD in comparison to ABP as a function ofT for several
values ofK, including the dominant term forK→`. The
optimal learning ratehopt(T) of GD depicted in Fig. 8~a! has
a universal limit ofp for small T identical to the symmetric
phase. For largeT the limit becomes strongly dependent o
K. Again, there exists a qualitative difference between fin
K, where one finds analyticallyhopt}K for T→` and infi-
nite K, wherehopt}AT.

The quotient between the optimal learning rates of A
and GD in Fig. 8~b! shows no significant difference, in star
contrast to results in the symmetric phase. In general,
finds that the learning rate for ABP is larger than for G
whenbopt.1 and vice versa. For smallT the optimal learn-
ing rate approachesA3p for infinite K @Eq. ~B22c!# with
minor corrections for finiteK @Eq. ~B26c!#. For largeT, the
difference is a factor of 1/A2 for infinite K, whereas they are
identical for finiteK.

The kink in the curves aroundT'1 can be explained by
the fact that the condition that defineshopt for GD changes at
that point ~see above!. The corresponding critical teache
valueTc

crit(K) is shown in Fig. 8~c!.
The optimized convergence eigenvalue, which largely

termines the training time spent achieving an acceptable g
eralization error, is shown for GD in Fig. 8~d!, where we
have multipliedlopt by K for convenience. For smallT, one
finds thatlopt collapses on a universal curve (lopt}T2/K),
similar to its symmetric phase behavior. For largeT, the
behavior forlopt depends significantly on the order ofK as
that of the learning rate. Analytically, one finds forK finite

e-
FIG. 7. ~a! The optimal inverse temperaturebopt is shown for variousT values~see the legend! as a function ofK. It exhibits only a
significantK dependence for largeT. ~b! bopt is shown as a function ofT for variousK values~see the legend!, including the dominant term
for K→`. For smallT, we find a power-law increase ofb with 1/T independent ofK. For largeT, the behavior ofb strongly depends on
K.
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FIG. 8. ~a! The optimal learning ratehopt for GD as a function ofT for variousK values shows a significant increase for largeT andK.
~b! The quotient of the optimal learning rates of ABP and GD as a function ofT for variousK shows no significant difference in the learnin
rates of the two algorithms.~c! The teacher lengthTc

crit(K), where the optimal learning rate changes from the minimum ofl1 to the root of
l122l3, and the teacher lengthTopt(K), where the convergence ratel takes its global minimum. The latter coincides withbopt51 for all
K. ~d! The optimal convergence rate for GD multiplied byK as a function ofT collapses on a universal (K-independent! curve for smallT
and decays rapidly with exponent 2 as in the symmetric phase. For largeT, the convergence rate also decays inT, but with an exponent tha
seems to beK dependent.~e! The possible gain by using ABP is shown by plotting the quotient of the optimal convergence eigenva
the two training algorithms. The advantage of ABP is most impressive for smallT, where one can gain aK-independent factor 1/T in
comparison to gradient descent. For largeT the gain isK dependent but constant inT. ~f! The normalized difference between the maxim
and optimal learning rateDhmax

opt is shown for both adaptive back-propagationAABP and gradient descentAGD for K55,̀ as a function of
T. For both small and largeT one finds power-law behavior.
,
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and TK@1 that lopt is actually independent ofK and de-
creases proportionally toT3/2. For large T andT/K5 O(1),
on the other hand, the scaling isl}1/(TK).

To highlight the possible gains from using ABP
lopt(bopt)/lopt(1) is plotted as a function ofT in Fig. 8~e!.
For smallT, one finds as in the symmetric phase that AB
gains a factor 1/T, with only a very weakK dependence due
to corrections in the 1/K dependence for ABP. For largeT,
one finds only a constant gain for ABP, which ranges
tween 1.299 and 2.828 depending on the values ofT andK,
althoughbopt deviates significantly from 1 for finiteK.

A question one could ask is which teacher lengthTopt

maximizedlopt for givenK. This turns out to be identical fo
both algorithms@bopt(Topt)51# and its dependence onK is
shown in Fig. 8~c!. Although only of academic interest asT
is given by the rule to be learned, it nevertheless pres
some interesting insights. ABP effectively deforms t
search space via the single parameterb to compensate for
the anisotropy of the generalization error surface. AtTopt no
useful deformation can be obtained by usingbÞ1, leaving
room for speculation whether isotropy is recovered. Ot
methods for deforming the search space based on infor
tion geometry have been introduced recently and invo
more complicated learning rules, which may not always
tractable@5#.

In Fig. 8~f! the normalized separation between the ma
mal and optimal learning rate shows for both algorithms o
a very weak dependence onK in comparison toT. The gap is
largest forT5 O(1), the region of most likelyT values,
-

ts

r
a-
e
e

-
y

with a maximal separation around 30% for both algorithm
which is significantly smaller than the separation in the sy
metric phase. For both large and smallT, we find decays of
the normalized gap inT. For largeT, the decay is propor-
tional to 1/T for both algorithm, with slight differences in th
constant prefactor. For smallT, however, the behavior is
algorithm dependent, with a decay proportional toT for GD
proportional toAT for ABP.

As in the symmetric phase, the extension of the analy
to the full R-Q-S-C space and arbitraryT values has re-
vealed several insights. The normalization for the so
committee machine chosen here leads to the optimal lear
rate for both algorithms~and the optimal inverse temperatu
for ABP! being only weakly dependent onK in most practi-
cal learning scenarios, suggesting a similar scaling for
plied networks. For largeK one finds furthermore that th
training time scales withK in almost all cases, in contrast t
the symmetric phase, reflecting the fact that the student
den units have already specialized on a particular teac
hidden unit.

For extreme values ofT, one finds further interesting ef
fects. For smallT, GD training is slowed down by a furthe
factor of 1/T2, which can be reduced to a factor of 1/T by
the optimal choice ofbopt}1/T, similar to the symmetric
phase.

For largeT, one has to distinguish between two regime
For finite K, both the mapping of the network and the err
signal become increasingly discrete in this limit, leading
an architecture similar to a committee machine. In this ca
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the error signal is ofO(1/K) leading to a rescaling of the
learning rate withK, in order to keep the weight updat
constant for all network sizes, making the convergence
independent ofK. The increasingly discrete nature of th
error signal, however, seems responsible for the decrea
the convergence rate byT23/2 for both algorithms. The pos
sible gain of ABP stays constant in this limit, in spite of th
significant scaling ofbopt}T21/3.

In the limit whereK grows simultaneously withT, one
finds a qualitatively different behavior. This can be explain
by the smoothness of the network output and the error sig
in this case due to the fact that hidden units outputs
discrete but uncorrelated, giving rise to a Gaussian ou
distribution ~central limit theorem!.

V. SUMMARY AND DISCUSSION

This research has been initially motivated by the dom
nance of the suboptimal symmetric phase in on-line learn
of two-layer feedforward networks trained by gradient d
scent@2#. We proposed an adaptive back-propagation tra
ing algorithm@Eq. ~7!# parametrized by an inverse temper
ture b. For b51 standard back-propagation or GD
recovered, whereasb50 corresponds to a generalized He
rule.

ABP is designed to deform search space using the si
parameterb. For b.1, the specialization of the studen
nodes is improved by enhancing differences in the activa
between hidden units. In this region, the achievable learn
rate is usually higher than for GD, leading effectively
favoring rotational changes of the weight vector over len
changes. For 0,b,1, we find the opposite effect, as th
activation region of the student relevant for training is
creased and the learning rate decreased, causing an enh
ment of length changes. Its performance has been comp
to GD for a normalized soft-committee student network w
K hidden units learning a rule defined by an isotropic teac
(Tnm5Tdnm) of the same architecture. Furthermore, the
troduction of a natural normalization of the soft-committ
machine leads to more elegant results as it eliminates
unnatural scaling of the learning rate with the input dime
sion N and, in many cases, with the number of hidden un
K, which is a feature of the unnormalized model and s
gests a similar approach for real world networks.

For both relevant phases of learning, the symmetric
convergence phase, this work extends previous results@2,14#
substantially by addressing the influence of finite learn
rates in the symmetric phase and the influence of the tea
lengthT on the dynamics. The analysis identifies three int
esting regimes: largeK, smallT, and largeT.

A. Large K

For largeK, the linear analysis of the equations of motio
around the symmetric fixed point for small learning ra
suggests that the trapping time is inversely proportiona
the learning rate and growst}K2 for GD @17# andt}K for
optimized ABP withbopt}K. This suggests that for increas
ing network size it seems to become harder for a stud
node to distinguish between the many teacher nodes an
specialize on one of them. This is reflected by the decreas
te
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the squared student lengthQ* }1/K at the symmetric fixed
point, pushing the student hidden nodes into the linear reg
of the sigmoidal activation function, where differentiation
more difficult.

This picture is altered significantly when accounting f
finite learning rate effects, due to the decrease in the opti
learning ratehopt with K, beyond the rescaling implicit in the
network normalization. This rescaling assumes an unnorm
ized network output ofO(AK) and a typical squared erro
of O(K), which is appropriate in the case when the hidd
units of both the student and the teacher network are un
related. However, in the symmetric phase this is not the c
for the student network leading to errors that grow faster th
O(K) and making a decrease in the learning rate necess
The significant reduction of the learning rate may also
associated with the need to limit the proportion of the stud
length outside the space spanned by the teacher for largK.

The actual training time spent in the symmetric pha
therefore scalest}K8/3 for GD andt}K5/2 for ABP, reduc-
ing the benefit of an adjustable temperature toK1/6. One also
finds that the scaling for the optimal temperature change
bopt}AK in this limit.

For the convergence phase one finds that the training t
scales withK in almost all cases, reflecting the fact that t
learning rate must~implicitly ! be rescaled by 1/K as the typi-
cal quadratic deviation between teacher and student ou
increases proportionally toK. The optimal inverse tempera
ture and the optimal gain of using ABP in this regime a
dependent onT but remain constant for largeK due to the
fact that each student hidden unit is already specialized
one teacher unit and the effect of other units in inhibiti
further specialization is negligible.

These results mean that most of the training time is sp
in the symmetric phase~or search regime! for large net-
works, at least in learning scenarios with a certain amoun
symmetry. This suggests that considerably more ef
should be directed towards developing algorithms, which
significantly reduce the training time in this phase, than
wards fine tuning of the asymptotic convergence.

B. Small T

In the small-T limit, one finds very similar results for both
the symmetric and the convergence phases, e.g., the op
learning rate is universallyp for GD, the optimal inverse
temperature has the same scaling behavior (bopt}1/T), and
the optimal escape and the optimal convergence eigenv
scale withT2 for GD and withT for ABP in both learning
phases. This results in a gain of order 1/T, in using ABP, for
the whole training process.

The universal slowdown of learning in the small-T limit
may be explained by the fact that the learning rule becom
increasingly linear, resulting in a very flat~generalization!
error surface between the symmetric and the ze
generalization error fixed point. The major difference is t
scaling of the relevant eigenvalue with the number of hidd
units K, reflecting the lesser degree of confusion once
hidden unit symmetry is broken.

C. Large T

For largeT the picture is not as coherent, which can
explained by the increasingly binary nature of the hidd
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unit outputs. In the symmetric phase, the outputs of the
dent hidden units are highly correlated, whereas the out
of the teacher hidden units are uncorrelated, leading to la
errors between the student and teacher network output
scale withK but saturate for largeT, explaining the large
changes in the optimal learning parameters for mediumT but
also their indifference to further increases inT once T is
sufficiently large.

In the convergence phase, a significantly different beh
ior is observed for the two cases of finiteK and infiniteK,
where the network output is discrete and continuous, res
tively. For infiniteK, the error remains smooth and actua
decreases for largeT due to the increasingly binary hidde
unit output, giving rise to an increase ofhopt}T1/2. For finite
K, one typically finds that at most one student hidden u
‘‘misclassifies’’ the output of the corresponding hidden u
of the teacher, causing a discrete error of either 0 or 1/K and
leading to a rescaling of the learning rate proportional toK.

It would be quite interesting to study this limit mor
closely due to its similarity to the committee machine. T
possibility of tuning the weight function withb between a
Hebb-like form forb50 and a Gaussian form for finiteb
may give some idea about successful training algorithms
binary networks.

However, throughout our analyses we have implicitly a
sumed that the decay or increase in the exponential te
outstrips any algebraic variation in the prefactors and all
timizations were carried out under this assumption. This
reasonable at least for medium values ofT, which are most
likely to be encountered practically, but probably also
any finite values ofT. For infinite T, i.e., networks with
discrete hidden units, this ansatz is, however, insufficien
the exponential term vanishes and the dynamics becom
gebraic ina.

In principle, one could encompass these limiting cases
incorporating second-order terms of the Taylor series aro
the fixed points and solving the resulting set of nonline
differential equations by transforming them into matrix R
cati equations. Although this is in principle feasible, it go
beyond the scope of this paper.

D. Conclusions

This paper has shown the learning performance lim
tions of gradient descent in the on-line learning paradig
Within the model studied one finds severe drawbacks of G
especially in the symmetric phase, which dominates
learning process for large networks. The suggested adap
back-propagation algorithm generally speeds up the train
process considerably if its extra parameter, the inverse t
peratureb, is chosen optimally. It has provided us also w
some insight into the shortcomings of GD and has outlin
possible further research directions.

The relaxation of the constraintT51 has shown that the
optimal learning parameter values change significantly in
region of usually relevant teacher lengths and between
symmetric and the convergence phase, making it difficul
choose good learning parameters, i.e., the learning rateh and
the inverse temperatureb, in practice without prior knowl-
edge or estimation of the teacher lengths and the prog
made in learning. This should encourage more research
u-
ts
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reliable on-line estimation of optimal learning parameters
further suggests that the selection of individual learning
rameters for each hidden node of the network could pot
tially be hugely beneficial@10#. We therefore hope that thi
work will motivate further research into the efficiency o
on-line learning training algorithms and their systematic i
provement.
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APPENDIX A: DYNAMICAL EQUATIONS

The generalization error is calculated by averaging
quadratic loss function~1! explicitly over the activations
$x,y% ~and implicitly over all inputs!, which are multivariate
Gaussian distributed with zero mean and covariance matrC
given by

C5F Q R

RT TG . ~A1!

In the following all averages are taken with respect to t
distribution and making use of the convention that indic
i , j ,k,l and n,m label student and teacher nodes, resp
tively.

The generalization error then takes the form

eg5
g2

2KH K

M (
n,m51

M

J2~n,m!22AK

M (
i ,n51

K,M

J2~ i ,n!

1 (
i , j 51

K

J2~ i , j !J , ~A2!

with the integralJ2(1,2)5^g(u1)g(u2)&, whereui represent
members of$x,y% and we denote withI d , Jd averages overd
variables with one and twog terms, respectively. The inte
gral J2() can be calculated analytically for the generaliz
error functiongn(u)5 erf(nu/A2) giving

J2~1,2!5
2

p
arcsinS n2C12

A11n2C11A11n2C22
D . ~A3!

The dependence of the integral on the sigmoidal gainn can
be absorbed by redefining

C̃i j 5n2Ci j ,

a rescaling that also holds for the other integrals below.
evaluate an integral explicitly, the full covariance matrixC is
projected into the relevant subspace. For example, the
evant elements forJ2( i ,n) are C115Qii , C125Rin , and
C225Tnn . It is a property of multivariate Gaussian distribu
tions @2# that integrals of reduced dimensionality such



ra

unit
re-

e

et

3438 56ANSGAR H. L. WEST AND DAVID SAAD
J2(1,1) are generated from the general formJ2(1,2) by the
appropriate constraints~in this caseC115C125C22).

The differential equations forR and Q are calculated
similarly and take the form

dRin

da
5

hg2

K HAK

M (
m51

M

I 3~ i ,n,m!2 (
k51

K

I 3~ i ,n,k!J , ~A4a!

dQi j

da
5

hg2

K HAK

M (
m51

M

I 3~ i , j ,m!1 I 3~ j ,i ,m!

2 (
k51

K

I 3~ i , j ,k!1 I 3~ j ,i ,k!J
1S hg2

K D 2H K

M (
n,m51

M

J4~ i , j ,n,m!

22AK

M (
k,n51

K,M

J4~ i , j ,k,n!1 (
k,l 51

K

J4~ i , j ,k,l !J ,

~A4b!

with the integrals I 3(1,2,3)5^g8(u1)u2g(u3)& and
J4(1,2,3,4)5^g8(u1)g8(u2)g(u3)g(u4)&. Again for the
above choice of sigmoidal transfer function, these integ
can be calculated analytically. We find

I 3~1,2,3!5
2

p

C12~b!

AC13~1!

G3

c1~b!
, ~A5a!

J4~1,2,3,4!5S 2

p D 2 n2

AC12~b!
arcsinS C̃834

A11C̃833A11C̃844
D ,

~A5b!

where we have conveniently defined
ls

c i~b!511bC̃ii , c i j ~b!5bC̃i j

C i j ~••• !5c i~b!c j~••• !2c i j ~b!c i j ~••• !

F i5
c2~b!C̃1i2c12~b!C̃2i

C12~b!
,

G i5
c1~b!C̃2i2c12~b!C̃1i

C12~b!
,

C̃8 i j 5C̃i j 2b@C̃1iF j1C̃2iG j #,

with (•••) representing eitherb or 1. Again, one infers the
elements of the reduced covariance matrix using the
labeling convention and the appropriate dimensionality
duction.

One can see that the only role of the gainn is an explicit
rescaling of all order parameters by a factorn2 and an im-
plicit rescaling of the learning rateh by n2 in the differential
equations~A4!. The learning rate is further rescaled by th
linear output gain byg2. In combination with the input vari-
ances2, the overall rescaling for any order parameterP and
the learning rateh becomes

P̃5n2s2P, h̃5
n2g2s2

K
h. ~A6!

In the remainder of the paper we will therefore s
n5g5s51 without loss of generality.

APPENDIX B: REDUCED EQUATIONS

Reducing the free parameters forK5M andTnm5Tdnm
with the ansatz~10! to just R, S, Q, and C simplifies the
generalization error~A2! to
eg5
1

pH arcsinS T

11TD22arcsinS R

A11QA11T
D 22~K21!arcsinS S

A11QA11T
D

1~K21!arcsinS C

11QD1arcsinS Q

11QD J . ~B1!

The differential equations forR, S, Q andC are determined from Eq.~A4! similarly and take the form

dR

da
5

2

p

h

K

1

g1
HR02g1

AR0

2
R

AQ0

2~K21!FbRS

AS0

1
Sg12bRC

AC0
G J , ~B2a!

dS

da
5

2

p

h

K

1

g1
H S02g1

AS0

2
Rg12bSC

AC0

2
bRS

AR0

2
S

AQ0

2~K22!FbS2

AS0

1
Sg1

AC0
G J , ~B2b!

dQ

da
5

4

p

h

K

1

g1
H R

AR0

2
Q

AQ0

1~K21!F S

AS0

2
C

AC0
G J 1

4

p2

h2

K2

1

g2
H arcsinSR12g2

R1
D
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22arcsinS R

AQ1R1
D 1arcsinS Q

Q1
D1~K21!F2arcsinS C

AQ1C1
D 22arcsinS S

AQ1S1
D 22arcsinS Sg222bRC

AR1C1
D

22arcsinS Rg222bSC

AS1C1
D 22arcsinS 2bRS

AR1S1
D 1arcsinS C12g2

C1
D1arcsinS S12g2

S1
D G

1~K21!~K22!FarcsinS C~g222bC!

C1
D22arcsinS S~g222bC!

AS1C1
D 2arcsinS 2bS2

S1
D G , ~B2c!

dC

da
5

4

p

h

K

1

g1
H Rg12bSC

AS0

2
Qg12bC2

AC0

1
Sg12bRC

AR0

2
C

AQ0

1~K22!F Sg3

AS0

1
Cg3

AC0
G J

1
4

p2

h2

K2

1

Ag3g4
H 2arcsinSQ22g3g4

Q2
D24arcsinS Rg12bSC

AQ2R2
D 12arcsinSR22g3g4

R2
D

12arcsinS C

Q2
D24arcsinS Sg12bRC

AQ2R2
D 12arcsinS b2~R21S2!22g1bRS

R2
D

1~K22!F4arcsinS CAg3

AQ2C2
D 24arcsinS ~Sg12bRC!Ag3

AR2C2
D 24arcsinS bS~S1R!Ag3

AR2S2
D

24arcsinS SAg3

AQ2S2
D 1arcsinS C22g4

C2
D22arcsinS Rg422bSC

AS2C2
D 1arcsinS S22g4

S2
D G

1~K22!~K23!FarcsinS Cg3

C2
D22arcsinS Sg3

AS2C2
D 2arcsinS 2bS2

S2
D G J , ~B2d!
ed

or
va

ial

ly,
the

of
ble

are
where we have for convenience defined

g1511bQ, g25112bQ, g3511b~Q2C!,

g4511b~Q1C!, Q05g11Q, Q15g21Q,

Q25g3g41Qg12bC2, C05~11Q!g12bC2,

C15~11Q!g222bC2, C25~11Q!g422bC2,

S05~11T!g12bS2, S15~11T!g222bS2,

S25~11T!g422bS2, R05~11T!g12bR2,

R15~11T!g222bR2,

R25~11T!g3g42bg1~R21S2!12b2RSC.

1. Symmetric fixed-point dynamics

For a linear theory of the dynamics around their fix
point, we need to expand the differential equations~B2! in a
Taylor series to first order

dpi

da
5mi01(

j 51

4

mi j pj ,

wherepi5Pi2Pi* andPi are generic order parameters. F
a fixed point the zeroth-order terms vanish and the eigen
 l-

ues and eigenvectors of the Jacobian matrixM of first de-
rivatives determine the solution of the linearized different
equation.

Under the constraintsQ5C andR5S, which are charac-
teristic for the symmetric fixed points studied analytical
one finds that the zeroth-order terms and the entries of
Jacobian matrixM obey the relations~hereP15R, P25S,
P35Q, andP45C)

m105m20, m305m40, m125~K21!m21,

m245m14, m225m111~K22!m21, m235m13,

m325m425~K21!m31, m325~K21!m31,

m445m331m342m43, m415m31. ~B3!

We omit the exact form of the remaining free parameters
the matrix as they are extremely tedious but easily deriva
from ~B2!. The eigenvalues of such a Jacobian matrix
given by

l15m112m21, l25m332m43,
~B4!

l3,45
1

2
@A01B06A~A02B0!214Km31C0#,
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with A05m111(K21)m21, B05m331m34, and C05m13
1m14. The corresponding~unnormalized! eigenvectorsvi
are given by

v15~~K21! 21 0 0!,

v25~1 1 v23 v24!, ~B5a!

v3,45~v ~3,4!;~1/2! v ~3,4!;~1/2! 1 1!,

with

v235
m34~m332m432A0!1Km14m31

m13m342m14m43
,

v245
m43~A01m432m33!2Km13m31

m13m342m14m43
,

~B5b!

v ~3,4!;~1/2!5
l3,42B0

Km31
,

where the first digit indicates the eigenvalue number and
second indicates the component index.

a. Truncated equations

For the truncated differential equations, whereh2 are ne-
glected, the onset of specialization is characterized by
eigenvalues

l1
05

2

p

hbT2

AK~11T!2T@K~11T!1bT#3/2
, ~B6a!

l2
050 ~B6b!

l3
052

2

p
hF K~11T!2T

K~11T!1bTG3/2

, ~B6c!

l4
052

4

p
hA K~11T!2T

K~11T!1bT
, ~B6d!

i.e., one finds only one relevant eigenvaluel1
0 ~and one mar-

ginal eigenvaluel2
0). If one takes a closer look at the eige

vectors, whose nonconstant terms take the form

v23
0 5

2K3/2~11T!

TAK~11T!2T
, ~B7a!

v24
0 52

2K3/2

~K21!TAK~11T!2T
,

~B7b!

v3;~1/2!
0 5

2AK

AK~11T!2T
, ~B7c!
e

e

v4;~1/2!
0 52

2K3/2~11T!

T~112b!AK~11T!2T
,

~B7d!

one can see that the positive eigenvaluel1
0 acts solely in the

student-teacher overlap space. This eigenvalue is assoc
with a pure rotation of the weight vectors towards the teac
unit they will specialize on. The marginal eigenvaluel2

0

~which will be important in the case whereh2 terms are not
neglected! shows an increase in the squared normQ of the
student weight vectors ofO(K), but a decrease in their cor
relations C of O(1), which corresponds primarily to a
growth of the student weight vectors outside the subsp
spanned by the teacher weight vectors.

b. Small-h fixed point

To calculate the first-order correction inh to the fixed
point of the truncated equations~11!, we expand the full
differential equations~B2! to first order around Eqs.~11! and
find the zeros of the resulting set of linear equations
(r ,s,q,c). Examining the relations~B3! more closely, one
can see that the solution is characterized byr 5s andq5c,
and we find for the new symmetric fixed poin
Q* 5C* 5Q0* 1Q1* andR* 5S* 5R0* 1R1* , ignoring terms
of O(h2),

Q1* 5
1

p

@K~11T!12bT#

@K~11T!2T#
GF

h

K
, ~B8a!

R1* 5
1

2p

T~112b!

AK~11T!2T
GF

h

K3/2
, ~B8b!

with

G5
AK~11T!1bT

AK~11T!1~2b21!T
, ~B8c!

F5arcsinS T$K@K~11T!2T#1~K21!2bT%

@K~11T!2T#@K~11T!12bT# D
2KarcsinS T

K~11T!K12bTD2~K21!

3arcsinS 2bT2

@K~11T!2T#@K~11T!12bT# D . ~B8d!

For the expansion to be valid,h has to be chosen to ensu
Q1* !Q0* and R1* !R0* . For large K, this implies
h<O(K21). We further note that the new fixed point is n
longer confined to the subspace spanned by the tea
weight vectors asR* ,AQ* T/K. However, the symmetries
Q5C and R5S are not broken to first order. This is i
contrast to the numerical results from integrating the f
dynamics~A4!, where we observe that the symmetric pha
for finite learning rates is characterized byQ.C ~and
R5S).
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c. Small-h dynamics

To study the onset of specialization, we expand the
ferential equations~B2! around the new fixed point, which i
again characterized byQ5C andR5S, and the matrix rela-
th
te
n

ia
th
y
ee
y
a
a

n
e
n
b

n
a-

f
a-
e

f-
tions ~B3! hold. Ignoring terms ofO(h3), we find that the
eigenvalues~eigenvectors! of the Jacobian have acquire
O(h2) @ O(h)# corrections to their values in Eq.~B6! @Eq.
~B7!#. In particular
l2
15

4

p2

AK~11T!2T

K~11T!1~2b21!T
bh2H K~11T!1~3b21!T

KAK~11T!1~2b21!T
F2

2bT2

AK@K~11T!12bT#
F AK

AK~11T!1~2b11!T

2
1

AK2~11T!~112T!1K~112T!T~2b21!24bT2
2

~K21!A11T

AK2~11T!21K~11T!T~2b21!24bT2G J , ~B9!
which is, in general, positive and dominated by theF term,
i.e., the marginal eigenvalue now becomes relevant to
dynamics. As mentioned in Appendix B 1, the associa
eigenvector~whoseh dependence can be ignored as it co
stitutes only a minor correction! shows an increase inQ of
O(K) and a decrease inC of O(1). As theincreases inR
andS are equal, this mode does not contribute to the spec
ization process but corresponds primarily to a growth of
student weight vectors outside the subspace spanned b
teacher weight vectors. Since the initial differences betw
Q and C are typically large, this eigenvalue will actuall
dominate the dynamics and quickly drive the student aw
from this particular fixed point. We therefore conclude th
the fixed point associated withQ5C is relevant only for
h50 and that a fixed point characterized byQ.C leads to
the long symmetric phase forh.0, which is not accessible
by first-order correction to the fixed point studied in Appe
dix B 1 b. An analytic study of that fixed point necessitat
an expansion to second order and the subsequent solutio
a set of quadratic equations, which we have found to
infeasible.

2. Convergence fixed-point dynamics

As for the symmetric fixed point, we expand the differe
tial equations~B2! to first order around the zero generaliz
tion error fixed pointQ* 5R* 5T and C* 5S* 50, where
we use the orderingP15R, P25Q, P35S, andP45C for
the convergence phase~again following the convention o
earlier work@2#!. Similarly, we also expand the generaliz
tion error ~B1! to second order. Explicitly, one finds for th
generalization error

eg5
1

pH 2r 2q

A112T
2

1

4

T~2r 2q!2

~112T!3/2
1

q~r 2q!

~112T!3/2

2
K21

11TF ~2s2c!1
q~s2c!

11T G J . ~B10!

The elements of the Jacobian matrix are given by

c1152
2

p

h

K

11~112b!T

@11~11b!T#3/2
, ~B11a!
e
d
-

l-
e
the
n

y
t

-
s

of
e

-

c125
1

p

h

K

T~112b!

@11~11b!T#3/2
, ~B11b!

c135
2

p

h

K

~K21!~112bT!

A11T~11bT!3/2
, ~B11c!

c1452
2

p

h

K

~K21!bT

A11T~11bT!3/2
, ~B11d!

c215
4

p

h

KH 11T

@11~11b!T#3/2
2

2

p

h

KF 1

A112~11b!T

1
~K21!

A~112bT!~112T!
G J , ~B11e!

c2352
4

p

h

K

~K21!

A11T
H 1

~11bT!3/2
2

2

p

h

KF 2

A11~112b!T

1
~K22!

A~112bT!~11T!
G J , ~B11f!

c315
2

p

h

K

1

A~11bT!~11T!
, ~B11g!

c3252
1

p

h

K

T

A11bT~11T!3/2
, ~B11h!

c3352
2

p

h

KF 1

A11~11b!T

~K22!

A~11bT!~11T!
G ,

~B11i!

c3450, ~B11j!

c4152
4

p

h

K

1

A11bT
H 1

A11T
2

2

p

h

KF 2

A11~21b!T

1
~K22!

A~11bT!~112T!
G J , ~B11k!
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c435
4

p

h

KH 1

A11~11b!T
1

~K22!

A~11bT!~11T!

2
2

p

h

KF 2

11~11b!T
1

~K22!

~11bT!~11T!

3S 4
A~11bT!~11T!

A11~11b!T
1~K23!D G J . ~B11l!

The remaining elements can be deduced by the matrix r
tions @18#

c112
1

2
c215c2222c12, ~B12a!

c332
1

2
c435c4422c34, ~B12b!

c132
1

2
c235c2422c14, ~B12c!

c312
1

2
c415c4222c32. ~B12d!

The eigenvalues of such a Jacobian matrix are given by
solutions to two quadratic equations

l1,25
1

2
@A11B16A~A12B1!214C1D1#, ~B13a!

l3,45
1

2
@A21B26A~A22B2!214C2D2#, ~B13b!

with

A15c112
1

2
c21, B15c4422c34, C15c312

1

2
c41,

D15c2422c14, A25c1112c12, B25c441
1

2
c43,

C25c3112c32, D25c241
1

2
c23.

The corresponding~unnormalized! eigenvectorsvi are given
by

v1,25~v ~1,2!;1 v ~1,2!;2 v ~1,2!;3 v ~1,2!;4!, ~B14a!

v3,45~1 2 v ~3,4!;~3/4! 2v ~3,4!;~3/4!!, ~B14b!

with ~usingc3450)

v ~3,4!;~3/4!5
l3,42A2

D2
, ~B14c!

v ~1,2!;152$2D1@c14C11c12~B22l1,2!1c32D2#

1c43c14~A12l1,2!%, ~B14d!
a-

e

v ~1,2!;25c21D1~l1,22c44!1c43c24~l1,22c11!

1D1~c31c231c41c24!1c43c21c14, ~B14e!

v ~1,2!;352c31c14~A22l1,2!12c32c24~c112l1,2!

2c14c21C222c24c12c31, ~B14f!

v ~1,2!;45
1

C1
~l1,22A1!$2~c21c322c12c41!~l1,22c44!

1C1@c21~l1,22c44!1c43~l1,22A2!

1c41D11c23C2#%. ~B14g!

Comparing the eigenvectors~B14! with the expansion of the
generalization error~B10!, one finds that the modesv3,4 are
orthogonal to the first-order terms in the generalization er
and therefore cannot contribute to their decay. These mo
are therefore only relevant for second-order terms in the g
eralization error with a decay rate of 2l3,4. As discussed in
Sec. IV B, the fastest convergence is given by Eq.~15!. This
is achieved either forh r

opt, where 2l35l1, or for hm
opt,

which is defined by the minimum ofl1. The critical~maxi-
mal! learning rates are defined by the zeros of the deter
nant inh

A1B15C1D1 , ~B15a!

A2B25C2D2 , ~B15b!

where only one nonzero learning rate solution exists in
~B15b!, coinciding withl150.

Unfortunately, it is in general infeasible to optimize th
eigenvalues with respect to the learning parametersh andb
analytically for arbitraryK and T. However, one can make
some progress in certain limits ofK and T, which we will
investigate below.

a. Large-K limit

The dominant terms for a large number of hidden units
all relevant quantities can be extracted by an asymptotic
ries expansion under the self-consistent ansatzh5 O(1) and
b5 O(1). For the tworelevant eigenvalues one makes t
ansatzl i5 O(K21) and finds to leading order

l1~b!52
4

p

h

K

px12hx2

E1E2E3~pE12h!
, ~B16a!

l3~b!52
2

p

h

K
~E3

232E1
23!, ~B16b!

with the auxiliary variables

x15E1E2~E12E3!, ~B16c!

x25E1E22E3@A112bT~11T!1A112T~11bT!2E1
2#,

~B16d!

E15A~11T!~11bT!, ~B16e!

E25A~112T!~112bT!, ~B16f!
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E35A11~11b!T. ~B16g!

These define two critical learning rates

hcrit
0 ~b!5p

x1

x2
, ~B17a!

hcrit
` ~b!5pE1.hcrit

0 , ~B17b!

where l1 is identical to zero (hcrit
0 ) and diverges (hcrit

` ),
respectively. Solving Eq.~B15b!, one findshmax5hcrit

0 , as
expected. It is important to realize that Eq.~B16a! is only a
valid expansion forl1 for h,hcrit

` , beyond which the ansat
l15 O(K21) breaks down asl15 O(1). In fact, the order
of the two eigenvaluesl1 and l2 changes athcrit

` and Eq.
~B16a! is the correct asymptotic expansion ofl2 for
h.hcrit

` . This change in the order of eigenvalues can be s
quite well in Fig. 6~a!, as the natural continuation forl1 for
largeh follows the curve representingl2 and vice versa. As
mentioned above, one has to calculate, in general, bothh r

opt

andhm
opt by solving 2l35l1 anddl1 /dh50, respectively.

Due to the breakdown of the ansatz forl1 abovehcrit
` , solu-

tions with hopt.hcrit
` are spurious.

For GD the eigenvalues and the critical learning ra
simplify to

l1~1!52
4

p

h

K
@~11T!2A112T#

3
pA112T2h

~112T!@p~11T!2h#
, ~B18a!

l3~1!52
2

p

h

K
@~112T!23/2 2~11T!23#,

~B18b!

hcrit
0 ~1!5pA112T, ~B18c!

hcrit
` ~1!5p~11T!, ~B18d!

resulting in the two candidates for the optimal learning r
taking the form

h r
opt~1!5

hcrit
` T@2~11T!32~21T!~112T!3/2#

~11T!4~A112T22!1~112T!3/2
,

~B19a!

hm
opt~1!5hcrit

` 2pA11T@~11T!2A112T#1/2.
~B19b!

To decide on the correct learning rate for givenT, one has to
evaluate whetherh r

opt(1),hcrit
` (1) and then calculate th

convergence rates for the two learning rates. We find
hopt(1)5h r

opt(1) for T.Tcrit and hopt(1)5hm
opt(1) for

T,Tcrit, whereTcrit51.2780 is defined byh r
opt(1)5hm

opt(1).
When optimizingb, one always finds that the fastest co

vergence is achieved for 2l35l1 and the optimal learning
rate is determined by
n

s

e

at

hopt~b!5pE2T$E1
4~11b!1E1E3

3@11b~11T!#%

3$E1
3E2~11b!T2E3

3@A112T~11bT!E1
2

1A112bT~11T!E1
22E1

42E2#%21. ~B20!

The optimal convergence rate, which is just given as 2l3 at
hopt, however, cannot be further optimized analytically wi
respect tob and this optimization has to be done nume
cally. The results forbopt and all other interesting quantitie
in this limit can be seen in Figs. 7 and 8.

To make further progress in theK→` limit, one can look
at the limitsT→` and T→0. These results turn out to b
equivalent, to leading order inK andT, to results where both
T and K go to their limits simultaneously, i.e., taking th
limit K→` with T5T`K and T5T0 /K, respectively.T0
andT` are prefactors controlling the significance betweenT
andK. Below, we therefore used the more general expans
in both variables for higher-order terms. Unfortunately, th
was infeasible for higher-order terms for optimized ABP
the small-T limit, where we present the results obtained
taking the large-K limit first.

~i! Small T limit(T5T0 /K). For GD the leading terms o
the relevant quantities in this limit are

hmax5pF11T2
1

2
T21

1

2

T2

K
~TK24!G , ~B21a!

hopt5pF11
1

2
~22A2!T2

A2

4

T

KG , ~B21b!

lopt522
T2

K F12~21A2!T1
19112A2

4
T21

A2

2

T

KG ,
~B21c!

with TK5T05 O(1). Theoptimization for ABP yields, for
K→` precedingT→0,

bopt5
2

T
1

3

10

53/4A6~A521!

AT
, ~B22a!

hmax5pA3F11
53/4A6~A521!

20
ATG ,

~B22b!

hopt5pA3F12
1519A523315

300~32A5!
TG ,

~B22c!

lopt52
4

3

T

KF12
53/4A6~32A5!

5~A521!
ATG .

~B22d!

In this limit ABP yields in leading order a factor of 2/3T21

in reduction of training time due to the increase ofbopt

}T21. Furthermore, the decrease in the normalized gap
tweenhmax andhopt is slowed down proportional to 1/AT.

~ii ! Large-T limit (T5T`K). For GD the leading terms o
the relevant quantities in this limit are
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hmax5pA2ATF12
AT

K
1

~112T`!2

4T G , ~B23a!

hopt5hmax2
pA2

2AT
, ~B23b!

lopt52
2

KTF12
AT

K
1

T`
2 1T`21

T G ,
~B23c!

whereas the optimization for ABP gives

bopt5
1

3
2

1

18

3A2T`18A621222A3

AT
, ~B24a!

hmax5pAT2
p

16
@11A2T`120114A328A2~21A3!#,

~B24b!

hopt5hmax2
3

4

p

AT
, ~B24c!

lopt52
3

2

A3

KTF12
T`2~22A2!~A32A2!

A2AT
G .

~B24d!

In this limit ABP yields only a constant factor o
3A3/4'1.2990 in reduction of training time and an increa
in the learning rate gap by a factor 3/2. This should be c
trasted to the increase in training time for both algorithms
a factorT and a decrease in the normalized learning rate
of T21. Two logical further extensions are to look at th
limits T→0 andT→` for K finite, especially as the numer
cal solutions indicate@see Fig. 7~b!# that there are qualitative
changes in the learning behavior at least forT→`.

b. Small-T limit

For small T, where the network becomes nearly line
one should only expect minor changes to the limits stud
previously since the network behaves smoothly. In parti
lar, we find for GD

hmax5pF11T2
K14

2K
T2G , ~B25a!

hopt5pF11S 12AK21

2K DT~11T!G ,
~B25b!

lopt522
T2

K F122S 11AK21

2K DTG .
~B25c!

For ABP only the leading term is feasible to calculate,
sulting in
-
y
p

,
d
-

-

bopt5
2

T
, ~B26a!

hmax5pA3
5K

5~K21!13A5
, ~B26b!

hopt5hmax, ~B26c!

lopt52
4

3

5T

5~K21!13A5
, ~B26d!

which explains the very weak influence ofK on the previous
results~besides the natural rescaling oflopt with K21).

c. Large-T limit

Unlike for small T, we find significant changes in th
learning behavior of both algorithms in the large-T limit. For
GD one finds for the leading orders

hmax5pA2KF12
K21

AT
G , ~B27a!

hopt5hmax2
pA2K

2T
, ~B27b!

lopt52
2

T3/2F12
K21

AT
G . ~B27c!

For ABP the numerical solutions suggest the self-consis
ansatzbopt}T21/3 and the leading terms are

bopt5
1

6F12~K21!2

T G1/3

2
5K119

54 F18~K21!

T2 G 1/3

,

~B28a!

hmax5pKH A22F3A2~K21!2

T G1/3

2
3K11

18 F36A2~K21!

T2 G 1/3J , ~B28b!

hopt5hmax2
pA2K

T
, ~B28c!

lopt52
1

T3/2H 4A226F3A2~K21!2

T G1/3

1
37K111

12 F36A2~K21!

T2 G 1/3J . ~B28d!

In this limit ABP yields a larger constant factor o
2A2'2.828 in reduction of training time and an increase
the learning rate gap by a factor 2, which is somewhat be
than for the infinite-K case.
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